cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A308794 Primes p such that A001175(p) = (p-1)/9.

Original entry on oeis.org

199, 919, 6679, 7489, 12979, 16921, 17011, 17659, 20089, 20431, 23059, 23599, 24391, 24859, 25309, 28081, 29629, 33301, 36901, 39079, 39439, 41761, 42589, 43399, 43669, 45361, 46261, 48619, 51481, 53479, 54091, 62011, 62191, 67411, 69499, 72019, 72091, 77419, 78301
Offset: 1

Views

Author

Jianing Song, Jun 25 2019

Keywords

Comments

Primes p such that ord((1+sqrt(5))/2,p) = (p-1)/9, where ord(z,p) is the smallest integer k > 0 such that (z^k-1)/p is an algebraic integer.
Let {T(n)} be a sequence defined by T(0) = 0, T(1) = 1, T(n) = k*T(n-1) + T(n-2), K be the quadratic field Q[sqrt(k^2+4)], O_K be the ring of integer of K, u = (k+sqrt(k^2+4))/2. For a prime p not dividing k^2 + 4, the Pisano period of {T(n)} modulo p (that is, the smallest m > 0 such that T(n+m) == T(n) (mod p) for all n) is ord(u,p); the entry point of {T(n)} modulo p (that is, the smallest m > 0 such that T(m) == 0 (mod p)) is ord(-u^2,p).
For an odd prime p:
(a) if p decomposes in K, then (O_K/pO_K)* (the multiplicative group of O_K modulo p) is congruent to C_(p-1) X C_(p-1), so the Pisano period of {T(n)} modulo p is equal to (p-1)/s, s = 1, 2, 3, 4, ...;
(b) if p is inert in K, then u^(p+1) == -1 (mod p), so the Pisano period of {T(n)} modulo p is equal to 2*(p+1)/r, r = 1, 3, 5, 7, ...
Here k = 1, and this sequence gives primes such that (a) holds and s = 9.
Number of terms below 10^N:
N | Number | Decomposing primes*
3 | 2 | 78
4 | 4 | 609
5 | 49 | 4777
6 | 405 | 39210
7 | 3489 | 332136
8 | 30132 | 2880484
* Here "Decomposing primes" means primes such that Legendre(5,p) = 1, i.e., p == 1, 4 (mod 5).

Crossrefs

Similar sequences that give primes such that (a) holds: A003147/{5} (s=1), A308787 (s=2), A308788 (s=3), A308789 (s=4), A308790 (s=5), A308791 (s=6), A308792 (s=7), A308793 (s=8), this sequence (s=9).

Programs

  • Mathematica
    pn[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k + 1], n] == 1, Return[k]]];
    Reap[For[p = 2, p < 50000, p = NextPrime[p], If[Mod[p, 9] == 1, If[pn[p] == (p - 1)/9, Print[p]; Sow[p]]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    Pisano_for_decomposing_prime(p) = my(k=1, M=[k, 1; 1, 0], Id=[1, 0; 0, 1]); if(isprime(p)&&kronecker(k^2+4,p)==1, my(v=divisors(p-1)); for(d=1, #v, if(Mod(M,p)^v[d]==Id, return(v[d]))))
    forprime(p=2, 80000, if(Pisano_for_decomposing_prime(p)==(p-1)/9, print1(p, ", ")))

A293200 Primes p with a primitive root g such that g^3 = g + 1 mod p.

Original entry on oeis.org

5, 7, 11, 17, 23, 37, 59, 67, 83, 101, 113, 167, 173, 199, 211, 227, 241, 251, 271, 283, 307, 317, 367, 373, 401, 433, 457, 479, 569, 571, 593, 599, 607, 613, 643, 659, 691, 701, 719, 727, 743, 757, 769, 809, 821, 829, 839, 853, 877, 883, 919, 941, 977, 991, 997, 1019, 1031, 1049
Offset: 1

Views

Author

Joerg Arndt, Oct 02 2017

Keywords

Comments

Since g^3 = g + 1, we have g^4 = g^2 + g, g^5 = g^3 + g^2, g^6 = g^4 + g^3, ..., g^(k+3) = g^(k+1) + g^k. Hence using g and g^2 we can compute all powers of the primitive root similar to A003147, where we have g^(k+2) = g^(k+1) + g^k (see the Shanks reference).

Crossrefs

Cf. A003147 (primitive root g such that g^2 = g + 1 mod p).
Cf. A293201 (primitive root g such that g^3 = g^2 + g + 1 mod p).
Cf. A104217.

Programs

  • Maple
    filter:= proc(p) local x,r;
      if not isprime(p) then return false fi;
      for r in map(t -> rhs(op(t)), [msolve(x^3-x-1,p)]) do
        if numtheory:-order(r,p) = p-1 then return true fi
      od;
      false
    end proc:
    select(filter, [seq(i,i=3..2000,2)]); # Robert Israel, Oct 02 2017
  • Mathematica
    selQ[p_] := AnyTrue[PrimitiveRootList[p], Mod[#^3 - # - 1, p] == 0&];
    Select[Prime[Range[200]], selQ] (* Jean-François Alcover, Jul 29 2020 *)
  • PARI
    Z(r,p)=znorder(Mod(r,p))==p-1;  \\ whether r is a primitive root mod p
    Y(p)=for(r=2,p-2,if( Z(r,p) && Mod(r^3-r-1,p)==0 , return(1))); 0; \\ test p
    forprime(p=2,10^3,if(Y(p),print1(p,", ")) );

A293201 Primes p with a primitive root g such that g^3 = g^2 + g + 1 mod p.

Original entry on oeis.org

7, 11, 13, 17, 19, 41, 47, 53, 73, 107, 131, 139, 149, 163, 167, 199, 227, 257, 263, 269, 271, 293, 311, 347, 349, 359, 373, 401, 419, 421, 431, 479, 523, 557, 599, 617, 683, 701, 757, 761, 769, 809, 827, 863, 877, 907, 911, 929, 937, 953, 991, 1031, 1033
Offset: 1

Views

Author

Joerg Arndt, Oct 02 2017

Keywords

Comments

Since g^3 = g^2 + g + 1, we have g^4 = g^3 + g^2 + g, g^5 = g^4 + g^3 + g^2, g^6 = g^5 + g^4 + g^3, ..., g^(k+3) = g^(k+2) + g^(k+1) + g^k. Hence using g and g^2 we can compute all powers of the primitive root similar to A003147, where we have g^(k+2) = g^(k+1) + g^k (see the Shanks reference).

Crossrefs

Cf. A003147 (primitive root g such that g^2 = g + 1 mod p).
Cf. A293200 (primitive root g such that g^3 = g + 1 mod p).

Programs

  • Maple
    filter:= proc(p) local x,r;
      if not isprime(p) then return false fi;
      for r in map(t -> rhs(op(t)), [msolve(x^3-x^2-x-1,p)]) do
        if numtheory:-order(r,p) = p-1 then return true fi
      od;
      false
    end proc:
    select(filter, [seq(i,i=3..2000,2)]); # Robert Israel, Oct 02 2017
  • Mathematica
    selQ[p_] := AnyTrue[PrimitiveRootList[p], Mod[#^3 - #^2 - # - 1, p] == 0&];
    Select[Prime[Range[2, 200]], selQ] (* Jean-François Alcover, Jul 29 2020 *)
  • PARI
    Z(r, p)=znorder(Mod(r, p))==p-1;  \\ whether r is a primitive root mod p
    Y(p)=for(r=2,p-2,if( Z(r,p) && Mod(r^3-r^2-r-1,p)==0 , return(1))); 0; \\ test p
    forprime(p=2,10^3,if(Y(p),print1(p,", ")) );

A268271 Primes p such that there is a Fibonacci-type sequence (mod p) that begins with (1,b) and encounters all quadratic residues of p in the first (p-1)/2 iterations (for some b).

Original entry on oeis.org

11, 19, 29, 31, 59, 71, 79, 89, 101, 131, 179, 181, 191, 229, 239, 251, 271, 311, 349, 359, 379, 401, 419, 431, 439, 479, 491, 499, 509, 571, 599, 631, 659, 719, 739, 751, 761, 839, 941, 971, 1019, 1021, 1039, 1051, 1061, 1091, 1109, 1171, 1229, 1249, 1259, 1319, 1361, 1399
Offset: 1

Views

Author

Michel Marcus, Mar 02 2016

Keywords

Examples

			p=11 is a term since, modulo 11, the sequence 1, 4, 5, 9, 3 satisfies 5=4+1, 9=5+4, 3=9+5, 1=9+3, ..., with a period of (11-1)/2 = 5.
		

Crossrefs

Subsequence of A045468.
Cf. A003147 (similar sequence for a different period).
Cf. A168429, A070373 (examples of such Fibonacci-type sequences).

Programs

  • PARI
    findr(p) = {for (k=1, (p-1)/2, if ((k^2 % p) == 5, return(k)););}
    isok(p) = {if ((p % 2) && isprime(p), pm = p % 5; if ((pm == 1) || (pm == 4), rf = findr(p);(znorder(Mod((1+rf)/2, p)) == (p-1)/2) || (znorder(Mod((1-rf)/2, p)) == (p-1)/2);););}

A366951 a(n) = 2*(p_n - 1)/A060305(n) iff p_n == +/- 1 (mod 5), 2*(p_n + 1)/A060305(n) iff p_n == +/- 2 (mod 5), 0 iff p_n = 5.

Original entry on oeis.org

2, 1, 0, 1, 2, 1, 1, 2, 1, 4, 2, 1, 2, 1, 3, 1, 2, 2, 1, 2, 1, 2, 1, 4, 1, 4, 1, 3, 2, 3, 1, 2, 1, 6, 2, 6, 1, 1, 1, 1, 2, 4, 2, 1, 1, 18, 10, 1, 1, 4, 9, 2, 2, 2, 1, 3, 2, 2, 1, 10, 1, 1, 7, 2, 1, 1, 6, 1, 3, 4, 3, 2, 1, 1, 2, 1, 2, 1, 4, 2, 2, 10, 2, 1, 2, 1
Offset: 1

Views

Author

A.H.M. Smeets, Oct 29 2023

Keywords

Crossrefs

Formula

a(n) == 0 (mod 2) for prime(n) == +/- 1 (mod 5) and n > 2.
a(n) == 1 (mod 2) for Prime(n) == +/- 2 (mod 5) and n > 2.
a(n) = 1 iff prime(n) in A071774.
a(n) = 2 iff prime(n) in ({2} union A003147)/{5}.
a(n) = 3 iff prime(n) in A308784.
a(n) = 4 iff prime(n) in A308787.
a(n) = 6 iff prime(n) in A308788.
a(n) = 7 iff prime(n) in A308785.
a(n) = 8 iff prime(n) in A308789.
a(n) = 9 iff prime(n) in A308786.
a(n) = 10 iff prime(n) in A308790.
a(n) = 12 iff prime(n) in A308791.
a(n) = 14 iff prime(n) in A308792.
a(n) = 16 iff prime(n) in A308793.
a(n) = 18 iff prime(n) in A308794.
a(n) = A296240(n) iff prime(n) == +/- 2 (mod 5) and n > 3.
a(n) = 2*A296240(n) iff prime(n) == +/- 1 (mod 5) and n > 3.
a(n) in {2^k: k > 1} iff prime(n) in {A047650}.
a(n) == 3 (mod 6) iff prime(n) in {A124096}.
a(n) == 6 (mod 12) iff prime(n) in {A046652}.
a(n) == 0 (mod 14) iff prime(n) in {A125252}.
Previous Showing 11-15 of 15 results.