cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A003247 Complement of A003248.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A003234(k) equals the image of some x by A000201(A001950()) (see 1.20 p. 339 of Carlitz link). - Michel Marcus, Feb 02 2014
This is the function named t in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • PARI
    A000201(n) = floor(n*(sqrt(5)+1)/2);
    A001950(n) = floor(n*(sqrt(5)+3)/2);
    A003231(n) = floor(n*(sqrt(5)+5)/2);
    is003234(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1;
    lista(nn) = {vab = vector(nn, i, A000201(A001950(i))); v003234 = select(n->is003234(n), vector(nn, i, i)); for (n=1, #v003234, if (vecsearch(vab, v003234[n]), print1(n, ", ")););} \\ Michel Marcus, Feb 02 2014

Extensions

More terms from Michel Marcus, Feb 02 2014
New definition from Eric M. Schmidt, Aug 14 2014

A006132 Related to representations as sums of Fibonacci numbers.

Original entry on oeis.org

1, 6, 9, 22, 40, 43, 48, 56, 61, 64, 111, 145, 150, 153, 166, 255, 273, 276, 281, 289, 294, 297, 310, 315, 318, 323, 328, 331, 336, 344, 378, 383, 386, 399, 417, 420, 425, 433, 438, 441, 488, 721, 755, 760, 763, 776, 865, 988, 993, 996, 1009, 1027, 1030, 1035
Offset: 1

Views

Author

Keywords

Comments

Numbers such that A003231(n) = A003234(n), see Table 1 p. 357 in Carlitz link. - Michel Marcus, Feb 02 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • PARI
    A001950(n) = floor(n*(sqrt(5)+3)/2); \\ b
    A003231(n) = floor(n*(sqrt(5)+5)/2); \\ c
    iss(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1;
    lista(nn) = {v003231 = vector(nn, i, floor(i*(sqrt(5)+5)/2)); v003234 = select(n->iss(n), vector(5*nn, i, i)); for (n=1, nn, if (v003231[n] == v003234[n], print1(n, ", ")););}  \\ Michel Marcus, Feb 02 2014

Extensions

More terms from Michel Marcus, Feb 02 2014

A247425 A005206(A003259(n)).

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 12, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 41, 43, 45, 46, 48, 49, 51, 53, 54, 56, 58, 59, 61, 62, 64, 66, 67, 69, 71, 72, 74, 75, 77, 79, 80, 82, 83, 85, 87, 88, 90, 92, 93, 95, 96, 98, 100, 101, 103, 105
Offset: 1

Views

Author

Eric M. Schmidt, Sep 17 2014

Keywords

Comments

This is the function named psi in [Carlitz].

Formula

a(n) = A000201(n) - 1 for n of the form A000201(A003234(j)) + 1; a(n) = A000201(n) for other n. [Carlitz, Thm. 4.6].

A006133 Related to representations as sums of Fibonacci numbers.

Original entry on oeis.org

3, 21, 32, 79, 144, 155, 173, 202, 220, 231, 401, 524, 542, 553, 600, 922, 987, 998, 1016, 1045, 1063, 1074, 1121, 1139, 1150, 1168, 1186, 1197, 1215, 1244, 1367, 1385, 1396, 1443, 1508, 1519, 1537, 1566, 1584, 1595, 1765, 2608, 2731, 2749, 2760, 2807, 3129
Offset: 1

Views

Author

Keywords

Comments

Common value of A003231(x) and A003234(x) for x in A006132 (see Table 1 p. 357 in Carlitz link). - Michel Marcus, Feb 02 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • PARI
    A001950(n) = floor(n*(sqrt(5)+3)/2); \\ b
    A003231(n) = floor(n*(sqrt(5)+5)/2); \\ c
    iss(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1;
    lista(nn) = {v003231 = vector(nn, i, floor(i*(sqrt(5)+5)/2)); v003234 = select(n->iss(n), vector(5*nn, i, i)); for (n=1, nn, if (v003231[n] == v003234[n], print1(v003231[n], ", ")););}  \\ Michel Marcus, Feb 02 2014

Formula

a(n) = A003231(A006132(n)) = A003234(A006132(n)). - Michel Marcus, Feb 02 2014

Extensions

More terms from Michel Marcus, Feb 02 2014
Previous Showing 11-14 of 14 results.