cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A306704 Expansion of Sum_{k>=0} x^(k*(k+1)/2) / Product_{j=1..k} (1 + j*x^j).

Original entry on oeis.org

1, 1, -1, 2, -2, 0, 1, 3, -5, -6, 11, 11, -12, -35, 33, 35, -22, -102, 170, 47, -224, -491, 874, 695, -598, -2606, 2246, 1503, -664, -6420, 11590, 2526, -13762, -34647, 61785, 37119, -32372, -181052, 147105, 104896, 12824, -436333, 799007, -109587, -868230, -2316921, 4447531
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 46; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 + j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306706 Expansion of Sum_{k>=0} x^(k*(k+1)/2) / Product_{j=1..k} (1 + x^j)^j.

Original entry on oeis.org

1, 1, -1, 2, -2, 0, 1, 2, -4, -3, 7, 4, -4, -14, 6, 10, 12, -14, 0, -26, 3, 7, 60, 11, -27, -99, -26, 6, 126, 94, 58, -87, -180, -201, -46, 145, 282, 330, 142, -21, -515, -573, -716, -15, 423, 1519, 1128, 1197, -783, -1378, -3264, -1892, -1574, 2155, 2679, 6075, 3376, 3243
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 57; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A302580 Numbers k such that the coefficient of x^k in the expansion of Ramanujan's function R(x) = Sum_{i>=0} x^(i*(i+1)/2)/Product_{j=1..i} (1 + x^j) is zero.

Original entry on oeis.org

6, 9, 11, 16, 20, 21, 23, 27, 29, 30, 31, 33, 34, 36, 37, 38, 41, 44, 46, 49, 53, 56, 58, 59, 60, 61, 63, 64, 65, 66, 71, 72, 79, 80, 81, 82, 85, 86, 91, 93, 94, 96, 97, 98, 102, 104, 106, 107, 110, 111, 114, 115, 116, 120, 121, 122, 124, 128, 129, 131, 133, 135, 136, 137, 141, 142, 146, 148
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2018

Keywords

Comments

Numbers k such that number of partitions of k into distinct parts with even rank equals number of partitions of k into distinct parts with odd rank (the rank of a partition is its largest part minus the number of parts).

Crossrefs

Programs

  • Mathematica
    Flatten[Position[nmax = 150; Rest[CoefficientList[Series[Sum[x^(i (i + 1)/2)/Product[(1 + x^j), {j, 1, i}], {i, 0, nmax}], {x, 0, nmax}], x]], 0]]
Previous Showing 11-13 of 13 results.