cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 345 results. Next

A322352 a(n) = max(A003557(n), A173557(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 3, 4, 10, 2, 12, 6, 8, 8, 16, 3, 18, 4, 12, 10, 22, 4, 5, 12, 9, 6, 28, 8, 30, 16, 20, 16, 24, 6, 36, 18, 24, 4, 40, 12, 42, 10, 8, 22, 46, 8, 7, 5, 32, 12, 52, 9, 40, 6, 36, 28, 58, 8, 60, 30, 12, 32, 48, 20, 66, 16, 44, 24, 70, 12, 72, 36, 8, 18, 60, 24, 78, 8, 27, 40, 82, 12, 64, 42, 56, 10, 88, 8
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, Max[ Times @@ (First[#]^ (Last[#]-1)& /@  f), Times@@((#-1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A322352(n) = max(A003557(n), A173557(n));

Formula

a(n) = max(A003557(n), A173557(n)).
a(n) = A000010(n) / A322351(n).

A323370 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 26, 29, 3, 30, 3, 31, 32, 33, 3, 34, 35, 36, 37, 38, 3, 39, 40, 41, 42, 43, 3, 44, 3, 45, 46, 47, 48, 49, 3, 50, 51, 52, 3, 53, 3, 54, 55, 56, 57, 52, 3, 58, 59, 60, 3, 61, 62, 63, 64, 65, 3, 66, 67, 68, 57, 69, 67, 70, 3, 71, 72, 73, 3, 74, 3, 75, 76
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

Restricted growth sequence transform of function f, defined as f(n) = 0 when n is an odd prime, and f(n) = [A000035(n), A003557(n), A023900(n)] for all other numbers.
For all i, j:
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A323367(i) = A323367(j),
a(i) = a(j) => A323371(i) = A323371(j).

Crossrefs

Differs from A323405 for the first time at n=78, where a(78) = 52, while A323405(78) = 58.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    Aux323370(n) = if((n>2)&&isprime(n),0,[(n%2), A003557(n), A023900(n)]);
    v323370 = rgs_transform(vector(up_to, n, Aux323370(n)));
    A323370(n) = v323370[n];

A336551 a(n) = A003557(n) - 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0, 0, 7, 0, 2, 0, 1, 0, 0, 0, 3, 4, 0, 8, 1, 0, 0, 0, 15, 0, 0, 0, 5, 0, 0, 0, 3, 0, 0, 0, 1, 2, 0, 0, 7, 6, 4, 0, 1, 0, 8, 0, 3, 0, 0, 0, 1, 0, 0, 2, 31, 0, 0, 0, 1, 0, 0, 0, 11, 0, 0, 4, 1, 0, 0, 0, 7, 26, 0, 0, 1, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 15, 0, 6, 2, 9, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A336551(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); (factorback(f)-1); };

Formula

a(n) = A066503(n) / A007947(n).

A347128 a(n) = A018804(n) / A003557(n), where A018804 is Pillai's arithmetical function.

Original entry on oeis.org

1, 3, 5, 4, 9, 15, 13, 5, 7, 27, 21, 20, 25, 39, 45, 6, 33, 21, 37, 36, 65, 63, 45, 25, 13, 75, 9, 52, 57, 135, 61, 7, 105, 99, 117, 28, 73, 111, 125, 45, 81, 195, 85, 84, 63, 135, 93, 30, 19, 39, 165, 100, 105, 27, 189, 65, 185, 171, 117, 180, 121, 183, 91, 8, 225, 315, 133, 132, 225, 351, 141, 35, 145, 219, 65, 148
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Crossrefs

Cf. A003557, A018804, A348494 [= gcd(a(n), A342001(n))], A348496 [= gcd(a(n), A347129(n))].
Cf. also A173557, A347127.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; A347128[n_] := (Times @@ (f @@@ FactorInteger[n]))/(n/Times @@ (First[Transpose[FactorInteger[n]]]));Table[A347128[n], {n, 1, 76}] (* Robert P. P. McKone, Aug 23 2021, after Amiram Eldar *)
  • PARI
    A347128(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i, 1]-1)*f[i, 2] + f[i, 1])); };

Formula

Multiplicative with a(p^e) = ((p-1)*e + p).
a(n) = A018804(n) / A003557(n).

A349340 Dirichlet inverse of A003557, where A003557 is multiplicative with a(p^e) = p^(e-1).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -1, -2, 1, -1, 1, -1, 1, 1, -1, -1, 2, -1, 1, 1, 1, -1, 1, -4, 1, -4, 1, -1, -1, -1, -1, 1, 1, 1, 2, -1, 1, 1, 1, -1, -1, -1, 1, 2, 1, -1, 1, -6, 4, 1, 1, -1, 4, 1, 1, 1, 1, -1, -1, -1, 1, 2, -1, 1, -1, -1, 1, 1, -1, -1, 2, -1, 1, 4, 1, 1, -1, -1, 1, -8, 1, -1, -1, 1, 1, 1, 1, -1, -2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Crossrefs

Cf. A003557, A076479, A326297 (absolute values).
Cf. also A325126, A349350, A349619.

Programs

  • Mathematica
    f[p_, e_] := -(p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
  • PARI
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    memoA349340 = Map();
    A349340(n) = if(1==n,1,my(v); if(mapisdefined(memoA349340,n,&v), v, v = -sumdiv(n,d,if(dA003557(n/d)*A349340(d),0)); mapput(memoA349340,n,v); (v)));
    
  • PARI
    A349340(n) = { my(f=factor(n)); prod(i=1, #f~, -((f[i,1]-1)^(f[i,2]-1))); };

Formula

Multiplicative with a(p^e) = -((p-1)^(e-1)).
a(n) = A076479(n) * A326297(n).
a(1) = 1; a(n) = -Sum_{d|n, d < n} A003557(n/d) * a(d).

A349396 Dirichlet convolution of A342001 ({arithmetic derivative of n}/A003557(n)) with A055615 (Dirichlet inverse of n).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, -1, -1, 0, 1, -2, 1, 0, 0, -2, 1, -6, 1, -2, 0, 0, 1, -2, -3, 0, -3, -2, 1, 0, 1, -3, 0, 0, 0, 2, 1, 0, 0, -2, 1, 0, 1, -2, -6, 0, 1, -2, -5, -20, 0, -2, 1, -6, 0, -2, 0, 0, 1, 0, 1, 0, -6, -4, 0, 0, 1, -2, 0, 0, 1, 8, 1, 0, -20, -2, 0, 0, 1, -2, -5, 0, 1, 0, 0, 0, 0, -2, 1, 0, 0, -2, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2021

Keywords

Comments

Dirichlet convolution of this sequence with A000010 (Euler phi) is A346485.

Crossrefs

Cf. A346485, A347234, A347235, A347395, A347954, A347959, A347961, A347963 for Dirichlet convolutions of A342001 with other sequences.
Cf. also A349394.

Programs

Formula

a(n) = Sum_{d|n} A055615(d) * A342001(n/d).

A353572 Shifted variant of A342002: a(n) = A353571(A276086(n)), where A353571(x) = A003415(A003961(x)) / A003557(A003961(x)) and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 1, 8, 2, 11, 1, 10, 12, 71, 19, 92, 2, 13, 17, 86, 24, 107, 3, 16, 22, 101, 29, 122, 4, 19, 27, 116, 34, 137, 1, 14, 16, 103, 27, 136, 18, 131, 167, 886, 244, 1117, 29, 164, 222, 1051, 299, 1282, 40, 197, 277, 1216, 354, 1447, 51, 230, 332, 1381, 409, 1612, 2, 17, 21, 118, 32, 151, 25, 152, 202, 991, 279
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353571(n) = { my(s=A003961(n)); (A003415(s)/A003557(s)); };
    A353572(n) = A353571(A276086(n));

Formula

a(n) = A353571(A276086(n)).
a(n) = A342002(A276154(n)).
For all n >= 0, a(n) >= A342002(n).

A371088 Numbers k such that A003557(k) divides A276086(k), where A003557(k) is k divided by its largest squarefree divisor, and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2024

Keywords

Crossrefs

Union of A005117 and A371086.
Cf. A003557, A276086, A371087 (characteristic function), A371089 (complement).
Cf. A358221 (subsequence).

Programs

A319347 Filter sequence combining A000035(n) (parity of n), A003557(n), and A046523(n) (prime signature of n).

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 5, 3, 8, 3, 5, 9, 10, 3, 11, 3, 8, 9, 5, 3, 12, 13, 5, 14, 8, 3, 15, 3, 16, 9, 5, 9, 17, 3, 5, 9, 12, 3, 15, 3, 8, 18, 5, 3, 19, 20, 21, 9, 8, 3, 22, 9, 12, 9, 5, 3, 23, 3, 5, 18, 24, 9, 15, 3, 8, 9, 15, 3, 25, 3, 5, 26, 8, 9, 15, 3, 19, 27, 5, 3, 23, 9, 5, 9, 12, 3, 28, 9, 8, 9, 5, 9, 29, 3, 30, 18, 31, 3, 15, 3, 12, 32
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2018

Keywords

Comments

Restricted growth sequence transform of triple [A000035(n), A003557(n), A046523(n)], or equally, of triple [A007814(n), A003557(n), A046523(n)], or equally, of ordered pair [A000035(n), A291757(n)].
For all i, j: A305801(i) = A305801(j) => a(i) = a(j) => A305891(i) = A305891(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p=0); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    v319347 = rgs_transform(vector(up_to,n,[A003557(n),(n%2),A046523(n)]));
    A319347(n) = v319347[n];

A323163 Greatest common divisor of product (1+(p^e)) and product p^(e-1), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A003557(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 10, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Differs from A062760 for the first time at n=36, where a(36) = 2, while A062760(36) = 1.

Programs

  • PARI
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323163(n) = gcd(A003557(n), A034448(n));

Formula

a(n) = gcd(A003557(n), A034448(n)).
Previous Showing 41-50 of 345 results. Next