cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A082122 Smallest difference > 1 between d and p/d for any divisor d of the partial product p of the sequence, starting with 11.

Original entry on oeis.org

11, 10, 17, 21, 23, 31, 43, 167, 6383, 31741, 52112213, 37549127743, 36777947021270771, 504837176634758950812127
Offset: 0

Views

Author

Ralf Stephan, Apr 04 2003

Keywords

Crossrefs

Cf. A082120, A003681 (starts with 2, 3), A082123.

Programs

  • PARI
    p=11; print1(p, ", "); for(n=1, 50, v=divisors(p); r=sqrt(p); t=0; for(k=1, matsize(v)[2], if(v[k]>=r, t=k; break)); if(v[t]^2==p, u=t, u=t-1); if(v[t]-v[u]<2, u=u-1; t=t+1); print1(v[t]-v[u]", "); p=p*(v[t]-v[u]))

A082124 Smallest difference>1 between d and p/d for any divisor d of the partial product p of the sequence, starting with 9.

Original entry on oeis.org

9, 8, 6, 6, 6, 36, 39, 618, 4932, 60192, 3075084, 349550100, 15219084556800, 13331385308976969710
Offset: 1

Views

Author

Ralf Stephan, Apr 04 2003

Keywords

Crossrefs

Cf. A082120, A082123, A003681 (starts with 2, 3), A082125.

Programs

  • PARI
    p=9; print1(p, ", "); for(n=1, 50, v=divisors(p); r=sqrt(p); t=0; for(k=1, matsize(v)[2], if(v[k]>=r, t=k; break));  if(v[t]^2==p, u=t, u=t-1);  if(v[t]-v[u]<2, u=u-1; t=t+1); print1(v[t]-v[u]", "); p=p*(v[t]-v[u]))

Extensions

a(14) from Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 02 2006

A063269 a(1) = 3, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

3, 13, 113, 1113, 2153, 12153, 34051, 172003, 1311313, 3473779, 5365543, 16913173, 34014973, 229148537, 479347809, 1807726517, 11807726517, 20529575173, 69833293981, 179443389167, 230839777353, 376946592451
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 3, 24 ]

A063380 a(1) = 4, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

4, 22, 211, 1211, 7173, 9797, 97101, 910789, 1182799, 1319029, 6719687, 7678761, 32559587, 257126691, 1591617149, 6653239233, 62767105999, 126149775659, 432933715713, 2435717774509, 6598336914323, 19495633384521
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 4, 24 ]

A063382 a(1) = 5, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

5, 15, 35, 57, 319, 1129, 11129, 31359, 310453, 1691837, 7241691, 15094799, 31486929, 159198031, 1159198031, 6203186877, 11721529237, 88429132553, 129487682919, 1228291054211, 1394483927247, 8800411584567, 34329256355023
Offset: 1

Views

Author

Robert G. Wilson v, Aug 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 5, 24 ]

A063384 a(1) = 7, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

7, 17, 117, 913, 1183, 1391, 13107, 51257, 151257, 381397, 577661, 4911789, 29116879, 112646989, 536920981, 1928258999, 11928258999, 25227472837, 46275452231, 212892173679, 370964057893, 1859199550327, 5593332415439
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[[ l/2 ] ]] <> ToString[ d[[ l/2 + 1 ]] ]], ToExpression[ ToString[ d[[ l/2 + .5 ] ]] <> ToString[ d[[ l/2 + .5 ] ]] ]] ); NestList[ f, 7, 25 ]

A063403 a(1) = 8, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

8, 24, 46, 223, 1223, 11223, 87129, 189461, 414621, 2072003, 12072003, 34024001, 163920759, 354640253, 1074732999, 7377145687, 17377145687, 57053304579, 393145173803, 834736688841, 8062231035367, 26899299722333, 27745499695017
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[[ l/2 ] ]] <> ToString[ d[[ l/2 + 1 ]] ]], ToExpression[ ToString[ d[[ l/2 + .5 ] ]] <> ToString[ d[[ l/2 + .5 ] ]] ]] ); NestList[ f, 8, 25 ]

A063423 a(1) = 9, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

9, 33, 311, 1311, 2357, 12357, 91373, 191373, 273701, 594639, 966071, 3792549, 7714919, 18474177, 36158059, 217166627, 415296747, 1269327263, 8581147923, 85531003291, 307572780863, 417501775143, 594709702027, 1334471501519
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 9, 25 ]

A063424 a(1) = 10, a(n) = concatenation of two closest factors of a(n-1) whose product equals a(n-1) or if a(n-1) is a prime then the concatenation of 1 and a(n-1).

Original entry on oeis.org

10, 25, 55, 511, 773, 1773, 9197, 17541, 91949, 143643, 347881, 3311051, 13311051, 35433757, 71499067, 72619847, 74179791, 82678973, 613313481, 1551395431, 1679289793, 4339053251, 6529966449, 9370214693, 71338602099, 222407320757
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[ n_Integer ] := (d = Divisors[ n ]; l = Length[ d ]; If[ EvenQ[ l ], ToExpression[ ToString[ d[ [ l/2 ] ] ] <> ToString[ d[ [ l/2 + 1 ] ] ] ], ToExpression[ ToString[ d[ [ l/2 + .5 ] ] ] <> ToString[ d[ [ l/2 + .5 ] ] ] ] ] ); NestList[ f, 10, 25 ]

A246463 a(n) = min(p +- q) > 1 with p*q being equal to the n-th primorial (A002110).

Original entry on oeis.org

5, 7, 11, 13, 17, 107, 41, 157, 1811, 1579, 18859, 95533, 17659, 1995293, 208303, 2396687, 58513111, 299808329, 3952306763, 341777053, 115405393057, 437621467859, 1009861675153, 6660853109087, 29075165225531, 418895584426457, 2371362636817019, 6889206780487667, 5258351738694673
Offset: 2

Views

Author

Robert G. Wilson v, Aug 26 2014

Keywords

Comments

All terms must be odd since 2 is only represented once in the factorization of any primorial. The two divisors of different parity, p and q, must straddle the square root of the primorial.

Examples

			a(7) = 41 since the middle four divisors of 7# or 2*3*5*7*11*13*17 = 510510 are 663, 714, 715 and 770. Because the middle two only differ by 1, the next pair, 663 and 770 are used and their difference is 107.
a(8) = 41 since the middle two divisors of 8# are 3094 and 3135 which have a difference of 41.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = mx = 1, fi = Prime@ Range@ n, prod = Fold[Times, 1, Prime@ Range@ n], sqrt, tms}, sqrt = Floor@ Sqrt@ prod; While[k < 2^n, tms = Times @@ (fi^IntegerDigits[k, 2, n]); If[mx < tms < sqrt, mx = tms]; k++]; prod/mx - mx]; Array[f, 30, 2]
  • PARI
    a(n)=my(P=prod(i=1,n,prime(i)));forstep(k=sqrtint(P),1,-1,if(P%k==0 && P/k-k>1, return(P/k-k))) \\ Charles R Greathouse IV, Aug 31 2014
    
  • PARI
    a(n)=my(P=prod(i=1,n,prime(i)),t); fordiv(P,d, if(P/d-d>1, t=P/d-d, return(t))) \\ Charles R Greathouse IV, Aug 31 2014
Previous Showing 11-20 of 21 results. Next