cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A305710 Expansion of e.g.f. exp(sec(x)*exp(x) - 1).

Original entry on oeis.org

1, 1, 3, 11, 53, 297, 1959, 14499, 120409, 1097025, 10931771, 117685163, 1363889133, 16887554569, 222672557631, 3110742121059, 45912214062961, 713290136581697, 11636755988405555, 198800967493444875, 3549276499518132325, 66076184834921382313, 1280502976522048458647
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2018

Keywords

Examples

			exp(sec(x)*exp(x) - 1) = 1 + x + 3*x^2/2! + 11*x^3/3! + 53*x^4/4! + 297*x^5/5! + 1959*x^6/6! + 14499*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(sec(x)*exp(x)-1),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sec[x] Exp[x] - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[(2 I)^k EulerE[k, 1/2 - I/2] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

A336024 Expansion of e.g.f. (1 + sinh(x)) / cos(x).

Original entry on oeis.org

1, 1, 1, 4, 5, 36, 61, 624, 1385, 18256, 50521, 814144, 2702765, 51475776, 199360981, 4381112064, 19391512145, 482962852096, 2404879675441, 66942218896384, 370371188237525, 11394877025289216, 69348874393137901, 2336793875186479104, 15514534163557086905
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + Sinh[x])/Cos[x], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := If[EvenQ[n], Abs[EulerE[n]], Sum[Binomial[n, k] Abs[EulerE[k]], {k, 0, n}]]; Table[a[n], {n, 0, 24}]

Formula

a(2*n) = A000364(n), a(2*n+1) = A002084(n).
Previous Showing 11-12 of 12 results.