cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A003844 Order of universal Chevalley group D_5(q), q = prime power.

Original entry on oeis.org

23499295948800, 2579025599882610278400, 1154606796534757164318720000, 27230655539587500000000000000000, 104772288945650279285144527564308480000, 42863636354909175368011800612065142374400
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[q, 5], {q, Select[Range[12], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = D(A000961(n+1),5) where D(q,n) is defined in A003830. - Sean A. Irvine, Sep 17 2015

A003845 Order of universal Chevalley group D_6(q), q = prime power.

Original entry on oeis.org

50027557148216524800, 27051378802435080953011843891200, 5081732431326820541485324550799360000000, 12987912192212013697265625000000000000000000000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[q, 6], {q, Select[Range[12], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = D(A000961(n+1),6) where D(q,n) is defined in A003830. - Sean A. Irvine, Sep 17 2015
Previous Showing 11-12 of 12 results.