cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A332506 Decimal expansion of the number snc(2 Pi), where snc is the sine-normal-to-cosine function; see A332500.

Original entry on oeis.org

5, 5, 4, 4, 1, 0, 0, 1, 7, 3, 9, 6, 4, 4, 2, 5, 8, 3, 5, 2, 6, 9, 9, 7, 4, 6, 7, 8, 8, 8, 5, 1, 3, 2, 3, 6, 4, 3, 8, 0, 9, 2, 7, 0, 3, 9, 8, 4, 9, 4, 5, 4, 1, 7, 6, 9, 8, 4, 2, 0, 8, 5, 4, 8, 8, 4, 2, 3, 4, 8, 1, 5, 7, 6, 8, 8, 8, 7, 0, 4, 0, 2, 6, 5, 6, 6
Offset: 1

Views

Author

Clark Kimberling, May 05 2020

Keywords

Examples

			snc(2 Pi) = 5.544100173964425835269974678885...
		

Crossrefs

Cf. A332500, A003957, A332523 (numerators of convergents), A332524 (denominators of convergents).

Programs

  • Mathematica
    u = u /. FindRoot[ u + Cos[u] == 2 Pi, {u, 0}, WorkingPrecision -> 150]
    RealDigits[u][[1]]

Formula

snc(2 Pi) = 2 Pi + snc(0), where snc(0) = Dottie number (A003957).

A335563 Decimal expansion of the real part of the complex root of cos(x + i*y) = x - i*y with least x > 0 and y > 0.

Original entry on oeis.org

9, 6, 2, 2, 6, 6, 0, 0, 6, 3, 3, 3, 0, 6, 0, 6, 8, 9, 4, 8, 5, 0, 8, 0, 9, 2, 5, 9, 3, 1, 0, 2, 5, 3, 7, 8, 2, 7, 5, 4, 7, 1, 4, 1, 9, 2, 8, 6, 6, 6, 4, 7, 4, 1, 2, 5, 5, 2, 0, 9, 5, 1, 6, 3, 4, 8, 1, 4, 2, 7, 7, 0, 0, 3, 8, 2, 6, 8, 9, 7, 7, 0, 6, 4, 4, 3, 8
Offset: 0

Views

Author

Amiram Eldar, Jun 14 2020

Keywords

Examples

			0.96226600633306068948508092593102537827547141928666...
		

Crossrefs

Cf. A003957, A335564 (the imaginary part), A335565, A335566.

Programs

  • Mathematica
    z = {x, y} /. FindRoot[{x == Cos[x]*Cosh[y], y == Sin[x]*Sinh[y]}, {{x, 1}, {y, 1}}, WorkingPrecision -> 100]; RealDigits[z[[1]], 10, 90][[1]]

A335564 Decimal expansion of the imaginary part of the complex root of cos(x + i*y) = x - i*y with least x > 0 and y > 0.

Original entry on oeis.org

1, 1, 1, 0, 9, 7, 4, 3, 8, 8, 0, 8, 4, 6, 9, 1, 7, 4, 4, 9, 0, 0, 8, 8, 7, 3, 5, 8, 4, 9, 3, 6, 5, 7, 9, 4, 4, 6, 6, 1, 8, 0, 0, 2, 8, 4, 2, 1, 0, 1, 4, 4, 8, 2, 8, 5, 9, 7, 7, 4, 1, 6, 6, 2, 3, 2, 0, 5, 2, 4, 2, 5, 1, 6, 6, 0, 1, 6, 8, 4, 3, 5, 4, 3, 8, 1, 8
Offset: 1

Views

Author

Amiram Eldar, Jun 14 2020

Keywords

Examples

			1.11097438808469174490088735849365794466180028421014...
		

Crossrefs

Cf. A003957, A335563 (the real part), A335565, A335566.

Programs

  • Mathematica
    z = {x, y} /. FindRoot[{x == Cos[x]*Cosh[y], y == Sin[x]*Sinh[y]}, {{x, 1}, {y, 1}}, WorkingPrecision -> 100]; RealDigits[z[[2]], 10, 90][[1]]

A335565 Decimal expansion of the real part of the complex root of cos(x + i*y) = x + i*y with least x > 0 and y > 0.

Original entry on oeis.org

5, 8, 6, 9, 5, 6, 0, 3, 7, 7, 3, 4, 7, 6, 1, 4, 3, 9, 4, 0, 8, 8, 1, 7, 2, 5, 6, 8, 1, 9, 2, 8, 4, 8, 6, 4, 0, 7, 9, 7, 0, 2, 7, 6, 0, 0, 9, 8, 0, 0, 9, 6, 7, 2, 2, 4, 0, 8, 1, 2, 3, 5, 9, 7, 2, 4, 9, 9, 5, 0, 5, 2, 2, 1, 2, 9, 9, 2, 6, 9, 1, 3, 9, 9, 5, 2, 6
Offset: 1

Views

Author

Amiram Eldar, Jun 14 2020

Keywords

Examples

			5.86956037734761439408817256819284864079702760098009...
		

Crossrefs

Cf. A003957, A335563, A335564, A335566 (the imaginary part).

Programs

  • Mathematica
    z = {x, y} /. FindRoot[{x == Cos[x]*Cosh[y], y == -Sin[x]*Sinh[y]}, {{x, 5}, {y, 2}}, WorkingPrecision -> 100]; RealDigits[z[[1]], 10, 90][[1]]

A335566 Decimal expansion of the imaginary part of the complex root of cos(x + i*y) = x + i*y with least x > 0 and y > 0.

Original entry on oeis.org

2, 5, 4, 4, 8, 8, 5, 7, 6, 6, 8, 8, 5, 7, 0, 9, 3, 2, 6, 5, 5, 5, 9, 7, 0, 4, 2, 5, 6, 7, 3, 0, 9, 9, 7, 2, 3, 5, 4, 8, 2, 2, 5, 8, 0, 1, 6, 8, 0, 8, 1, 6, 1, 2, 3, 1, 3, 8, 4, 1, 9, 1, 7, 3, 3, 0, 5, 3, 3, 8, 5, 7, 2, 0, 0, 9, 8, 1, 3, 1, 8, 0, 4, 5, 3, 1, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 14 2020

Keywords

Examples

			2.54488576688570932655597042567309972354822580168081...
		

Crossrefs

Cf. A003957, A335563, A335564, A335565 (the real part).

Programs

  • Mathematica
    z = {x, y} /. FindRoot[{x == Cos[x]*Cosh[y], y == -Sin[x]*Sinh[y]}, {{x, 5}, {y, 2}}, WorkingPrecision -> 100]; RealDigits[z[[2]], 10, 90][[1]]

A336083 Decimal expansion of the arclength on the unit circle such that the corresponding chord separates the interior into segments having 3 = ratio of segment areas; see Comments.

Original entry on oeis.org

2, 3, 0, 9, 8, 8, 1, 4, 6, 0, 0, 1, 0, 0, 5, 7, 2, 6, 0, 8, 8, 6, 6, 3, 3, 7, 7, 9, 3, 1, 3, 6, 2, 4, 8, 4, 6, 1, 1, 1, 9, 9, 6, 4, 5, 8, 5, 8, 8, 3, 1, 0, 3, 7, 5, 4, 5, 3, 1, 5, 2, 9, 3, 1, 9, 2, 7, 1, 9, 2, 8, 5, 8, 0, 2, 6, 6, 5, 2, 0, 9, 3, 9, 1, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Jul 11 2020

Keywords

Comments

Suppose that s in (0,Pi) is the length of an arc of the unit circle. The associated chord separates the interior into two segments. Let A1 be the area of the larger and A2 the area of the smaller. The term "ratio of segment areas" means A1/A2. See A336073 for a guide to related sequences.
Equals the median of the probability distribution function of angles of random rotations in 3D space uniformly distributed with respect to the Haar measure, i.e., the solution x to Integral_{t=0..x} ((1 - cos(t))/Pi) dt = 1/2 (see Reynolds, 2017; cf. A086118, A361605). - Amiram Eldar, Mar 17 2023

Examples

			arclength = 2.3098814600100572608866337793136248461119964...
		

Crossrefs

Programs

  • Mathematica
    k = 3; s = s /. FindRoot[(2 Pi - s + Sin[s])/(s - Sin[s]) == k, {s, 2}, WorkingPrecision -> 200]
    RealDigits[s][[1]]
  • PARI
    d=solve(x=0,1,cos(x)-x); d+Pi/2 \\ Gleb Koloskov, Feb 21 2021

Formula

Equals d+Pi/2 = A003957 + A019669, where d is the Dottie number. - Gleb Koloskov, Feb 21 2021

A009442 E.g.f. log(1 + x/cos(x)).

Original entry on oeis.org

0, 1, -1, 5, -18, 109, -720, 5977, -56336, 612729, -7453440, 100954061, -1502172672, 24395453861, -429076910080, 8128143367905, -164961704478720, 3571195811862385, -82142328351817728, 2000535014776893973
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A003957.

Programs

  • Mathematica
    CoefficientList[Series[Log[1 + x*Sec[x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 24 2015 *)
  • Maxima
    a(n):=2*n!*sum(((-1)^(n-1)*sum(binomial((n/2-m+j-1),j)*4^(m-j)*sum((i-j)^(2*m)*binomial(2*j,i)*(-1)^(m+j-i),i,0,j),j,0,m))/((n-2*m)*(2*m)!),m,1,(n-1)/2)+(-1)^(n-1)*n!/n; /* Vladimir Kruchinin, Jun 16 2011 */

Formula

a(n)=2*n!*sum(m=1..(n-1)/2, ((-1)^(n-1)*sum(j=0..m, binomial((n/2-m+j-1),j)*4^(m-j)*sum(i=0..j, (i-j)^(2*m)*binomial(2*j,i)*(-1)^(m+j-i))))/((n-2*m)*(2*m)!))+(-1)^(n-1)*n!/n. - Vladimir Kruchinin, Jun 16 2011
a(n) ~ (n-1)! * (-1)^(n+1) / r^n, where r = 0.7390851332151606416553120876738734040134117589... (see A003957) is the root of the equation cos(r) = r. - Vaclav Kotesovec, Jan 24 2015

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A197003 Decimal expansion of the slope of the line y=mx which meets the curve y=cos(x+Pi/4) orthogonally over the interval [0, 2*Pi] (as in A197002).

Original entry on oeis.org

1, 0, 9, 3, 1, 6, 9, 7, 4, 4, 9, 8, 5, 0, 1, 6, 9, 2, 2, 0, 8, 8, 1, 5, 3, 2, 1, 4, 1, 6, 0, 5, 7, 9, 7, 1, 4, 4, 0, 4, 8, 9, 0, 6, 5, 9, 2, 9, 4, 8, 9, 8, 8, 8, 3, 5, 6, 3, 5, 1, 7, 5, 1, 3, 3, 2, 4, 9, 6, 0, 5, 3, 7, 6, 7, 0, 9, 4, 4, 7, 3, 6, 8, 3, 7, 6, 7, 0, 6, 7, 9, 9, 3, 4, 8, 1, 7, 9, 3, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 09 2011

Keywords

Comments

See the Mathematica program for a graph.
xo=0.3695425666075803208276560438369...
yo=0.4039727532995172093189617400663...
m=1.09316974498501692208815321416057...
|OP|=0.54749949218543621432520415035...

Crossrefs

Programs

  • Mathematica
    c = Pi/4;
    xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100]
    RealDigits[xo] (* A197002 *)
    m = 1/Sin[xo + c]
    RealDigits[m]  (* A197003 *)
    yo = m*xo
    d = Sqrt[xo^2 + yo^2]
    Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, 1}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
  • PARI
    my(d=solve(x=0,1,cos(x)-x)); sqrt(2-2*sqrt(1-d^2))/d \\ Gleb Koloskov, Jun 16 2021

Formula

Equals sqrt(2-2*sqrt(1-d^2))/d where d = A003957. - Gleb Koloskov, Jun 16 2021

A198822 Decimal expansion of x > 0 satisfying x^2 - 2*cos(x) = 2.

Original entry on oeis.org

1, 4, 7, 8, 1, 7, 0, 2, 6, 6, 4, 3, 0, 3, 2, 1, 2, 8, 3, 3, 1, 0, 6, 2, 4, 1, 7, 5, 3, 4, 7, 7, 4, 6, 8, 0, 8, 0, 2, 6, 8, 2, 3, 5, 1, 7, 8, 0, 1, 5, 1, 4, 9, 2, 9, 9, 3, 1, 3, 6, 1, 2, 7, 1, 5, 4, 6, 5, 6, 9, 3, 0, 9, 7, 6, 7, 0, 9, 5, 1, 8, 9, 1, 9, 8, 7, 5, 2, 2, 1, 3, 8, 6, 3, 5, 3, 3, 0, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 30 2011

Keywords

Comments

See A198755 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.47817026643032128331062417534774680802682351780...
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = -2; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r] (* A198822 *)
  • PARI
    solve(x=0,1,cos(x)-x)*2 \\ Gleb Koloskov, Jun 16 2021

Formula

Equals 2*A003957. - Gleb Koloskov, Jun 16 2021

A217066 E.g.f. is series reversion of x*(sec(x)+tan(x)).

Original entry on oeis.org

1, -2, 9, -68, 725, -9966, 167629, -3334120, 76543785, -1992009850, 57948521521, -1863394764780, 65631109286717, -2512768138160294, 103905545328667125, -4615035074291158352, 219122841820491458897, -11075488610594107402098, 593746153204862664363481
Offset: 1

Views

Author

Vladimir Kruchinin, Sep 26 2012

Keywords

Crossrefs

Cf. A003957.

Programs

  • Mathematica
    a[n_] := Sum[ (-1)^k*Binomial[n+k-1, n-1] * Sum[ Binomial[n-2*i-2, k-1] * Sum[ (-1)^(j+i)*2^(-n+k-j+2*i+1)*StirlingS2[n-1, n+j-2*i-1] * Binomial[n+j-2*i-2, n-2*i-2]*(n+j-2*i-1)!, {j, 0, 2*i}], {i, 0, (n-k-1)/2}], {k, 1, n-1}]; a[1] = 1; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Feb 22 2013 *)
    Rest[CoefficientList[InverseSeries[Series[x*(Sec[x]+Tan[x]), {x, 0, 20}], x],x]*Range[0, 20]!] (* Vaclav Kotesovec, Jan 22 2014 *)
  • Maxima
    a(n):=if n=1 then 1 else
    sum((-1)^k*binomial(n+k-1,n-1)*sum(binomial(n-2*i-2,k-1)*sum((-1)^(j+i)*2^(-n+k-j+2*i+1)*stirling2(n-1,n+j+(-2)*i-1)*binomial(n+j+(-2)*i-2,n-2*i-2)*(n+j+(-2)*i-1)!,j,0,2*i),i,0,(n-k-1)/2),k,1,n-1);

Formula

a(n) = sum(k=1..n-1, (-1)^k*binomial(n+k-1,n-1)*sum(k=1..n-1, binomial(n-2*i-2,k-1)*sum(i=0..(n-k-1)/2, (-1)^(j+i)*2^(-n+k-j+2*i+1)*stirling2(n-1,n+j+(-2)*i-1)*binomial(n+j+(-2)*i-2,n-2*i-2)*(n+j+(-2)*i-1)!,j,0,2*i))), n>1, a(1)=1.
a(n) ~ (-1)^(n+1) * n^(n-1) * s / (sqrt(1+sin(s)) * exp(n) * (1-sin(s))^n), where s = 0.73908513321516... (see A003957) is the root of the equation s = cos(s). - Vaclav Kotesovec, Jan 22 2014
Previous Showing 21-30 of 43 results. Next