A359946 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, n XOR a(n) is a prime number (where XOR denotes the bitwise XOR operator).
2, 1, 4, 3, 6, 5, 10, 11, 12, 7, 8, 9, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 26, 27, 28, 23, 24, 25, 30, 29, 34, 35, 36, 31, 32, 33, 38, 37, 42, 43, 44, 39, 40, 41, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 58, 59, 60, 55, 56, 57, 62, 61, 64, 63, 66, 65, 68
Offset: 1
Examples
The first terms, alongside n XOR a(n), are: n a(n) n XOR a(n) -- ---- ---------- 1 2 3 2 1 3 3 4 7 4 3 7 5 6 3 6 5 3 7 10 13 8 11 3 9 12 5 10 7 13 11 8 3 12 9 5
Programs
-
Mathematica
nn = 2^10; c[] := False; a[1] = 2; c[2] = True; u = 1; Do[k = u; While[Nand[! c[k], PrimeQ@ BitXor[n, k]], k++]; Set[{a[n], c[k]}, {k, True}]; If[k == u, While[c[u], u++]], {n, 2, nn}]; Array[a, nn] (* _Michael De Vlieger, Jan 21 2023 *)
-
PARI
{ s = 0; for (n=1, 67, for (v=1, oo, if (!bittest(s, v) && isprime(bitxor(n, v)), print1 (v", "); s += 2^v; break))) }
Comments