cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A005112 Class 4- primes (for definition see A005109).

Original entry on oeis.org

47, 139, 167, 179, 269, 277, 347, 461, 467, 499, 599, 643, 691, 709, 797, 827, 829, 839, 857, 863, 967, 997, 1013, 1019, 1039, 1063, 1069, 1151, 1163, 1181, 1289, 1367, 1381, 1399, 1427, 1487, 1493, 1499, 1579, 1609, 1619, 1657, 1867, 1877, 1889, 1933, 1979
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[300], ClassMinusNbr[ Prime[ # ]] == 4 &]]

Extensions

Edited and extended by Robert G. Wilson v, Mar 20 2003

A081424 Class 5- primes (for definition see A005109).

Original entry on oeis.org

283, 359, 557, 659, 941, 1109, 1129, 1223, 1433, 1663, 1669, 1693, 1787, 1997, 2027, 2039, 2069, 2083, 2153, 2339, 2351, 2503, 2539, 2579, 2633, 2767, 2777, 2803, 2837, 2999, 3229, 3581, 3761, 3767, 3779, 3989, 4127, 4157, 4231, 4253, 4283, 4297, 4513
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[700], ClassMinusNbr[ Prime[ # ]] == 5 &]]

A081425 Class 6- primes (for definition see A005109).

Original entry on oeis.org

719, 1319, 1699, 2447, 3343, 4079, 4139, 4457, 4517, 4679, 4703, 5273, 5647, 6653, 6793, 7523, 7529, 7559, 8599, 9227, 9587, 9623, 9839, 10159, 10343, 10723, 10771, 11069, 11213, 11279, 11321, 11489, 11863, 11887, 12163, 12917, 12919, 13163
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[1700], ClassMinusNbr[ Prime[ # ]] == 6 &]]

A081429 Class 10- primes.

Original entry on oeis.org

138197, 207227, 621679, 621883, 633383, 760079, 829177, 863711, 898253, 978863, 1035499, 1036471, 1209191, 1451059, 1566179, 1658309, 1658353, 1761407, 1794229, 1796503, 1827479, 1900147, 2015303, 2029439, 2070997, 2072893
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[200000], ClassMinusNbr[ Prime[ # ]] == 10 &]]

A081430 Class 11- primes.

Original entry on oeis.org

1266767, 1520159, 2486717, 3316619, 4144541, 4512947, 4836779, 5389519, 5638379, 6218827, 6448979, 6633457, 6771419, 6907247, 7460149, 7462639, 7600597, 7739033, 7874627, 8153567, 8291573, 9110639, 9112319, 9121003
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[300000, 1000000], ClassMinusNbr[ Prime[ # ]] == 1 &]]

A081635 Class 7+ primes.

Original entry on oeis.org

15013, 16333, 22093, 24841, 43321, 49003, 52517, 54721, 62533, 63761, 69061, 69073, 70061, 74597, 75781, 75793, 75913, 82561, 83233, 84673, 87433, 87509, 88793, 91081, 92761, 94321, 98737, 99367, 101641, 105097, 110881, 111973, 114343
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[10820], ClassPlusNbr[ Prime[ # ]] == 7 &]]

A081638 Class 10+ primes.

Original entry on oeis.org

1065601, 2424973, 5114881, 7222561, 8124481, 8524091, 8647411, 8650321, 9190681, 9287521, 9590417, 10617601, 10929817, 11996161, 12349093, 12508081, 12786181, 12971117, 13570681, 14113027, 14308123, 14312743, 14476807
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[150000], ClassPlusNbr[ Prime[ # ]] == 10 &]]

A081634 Class 6+ primes.

Original entry on oeis.org

2917, 4933, 5413, 7507, 8167, 8753, 10567, 10627, 11047, 11261, 11677, 12073, 12251, 12421, 12433, 12553, 12721, 14293, 15017, 17041, 18181, 18493, 19267, 19333, 20023, 21193, 21313, 21661, 22397, 24481, 25933, 26261, 26437, 27361
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[3000], ClassPlusNbr[ Prime[ # ]] == 6 &]]

A081636 Class 8+ primes.

Original entry on oeis.org

49681, 109441, 120103, 151561, 198733, 210193, 246241, 255043, 266401, 280243, 295873, 326659, 326701, 347773, 355171, 360421, 368881, 397633, 397673, 423001, 441877, 447137, 471241, 480541, 489989, 499397, 508037, 511507, 532757, 539401
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[44535], ClassPlusNbr[ Prime[ # ]] == 8 &]]

A081637 Class 9+ primes.

Original entry on oeis.org

532801, 710341, 720617, 1212487, 1261157, 1372081, 1457293, 1490429, 1532173, 1657801, 1788547, 1789093, 1809601, 1829293, 1887877, 1944181, 1960141, 1997587, 2121853, 2161853, 2474413, 2484049, 2557441, 2578801, 2613607
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[196000], ClassPlusNbr[ Prime[ # ]] == 9 &]]
Previous Showing 11-20 of 39 results. Next