cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A225800 Triangle of rising diagonals of A011973 (with rows displayed as centered text).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 5, 4, 1, 1, 7, 6, 1, 1, 1, 9, 8, 6, 3, 1, 1, 11, 10, 15, 10, 1, 1, 13, 12, 28, 21, 1, 1, 1, 15, 14, 45, 36, 10, 4, 1, 1, 17, 16, 66, 55, 35, 20, 1, 1, 19, 18, 91, 78, 84, 56, 1, 1, 1, 21, 20, 120, 105, 165, 120, 15, 5, 1
Offset: 1

Views

Author

John Molokach, Jul 27 2013

Keywords

Comments

Row sums are A227300.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1;
  1,  1,  1;
  1,  1,  3,  2;
  1,  1,  5,  4;
  1,  1,  7,  6,  1;
  1,  1,  9,  8,  6,  3;
  1,  1, 11, 10, 15, 10;
  1,  1, 13, 12, 28, 21,  1;
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2 n - k - 2 - 3 Floor[k/2], Floor[k/2]], {n, 1, 25}, {k, 0, Floor[(2 n - 1)/3]}] (* John Molokach, Jul 29 2013 *)

Formula

r(n) = binomial(2n-k-2-3*floor(k/2), floor(k/2)), k = 0..floor((2n-1)/3). - John Molokach, Jul 29 2013

A301772 Number of odd chordless cycles in the n-antiprism graph.

Original entry on oeis.org

0, 2, 0, 2, 8, 2, 24, 16, 48, 92, 100, 310, 344, 808, 1344, 2102, 4480, 6462, 13092, 21662, 37488, 69904, 113652, 212844, 359856, 636402, 1134068, 1937072, 3493120, 6012746, 10639264, 18706394, 32550976, 57727738, 100407848, 177116816, 310493720, 543717148
Offset: 0

Views

Author

Eric W. Weisstein, Mar 26 2018

Keywords

Comments

Sequence extended to a(0)-a(3) using the formula/recurrence (actual 3-antiprism count is 0).

Programs

  • Mathematica
    Table[(RootSum[-1 + #1 - 2 #1^2 + #1^3 &, #1^n &] - RootSum[-1 + #1 + 2 #1^2 + #1^3 &, #1^n &])/2, {n, 0, 20}]
    LinearRecurrence[{0, 2, 2, -1, 2, -1}, {0, 2, 0, 2, 8, 2}, 20]
    CoefficientList[Series[2 x (1 - x^2 + 2 x^3)/(1 - 2 x^2 - 2 x^3 + x^4 - 2 x^5 + x^6), {x, 0, 20}], x]

Formula

a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6).
G.f.: 2*x*(1 - x^2 + 2*x^3)/( (x^3-x^2-2*x-1)*(x^3-x^2+2*x-1)).
2*a(n) = -3*A077990(n) -4*A077990(n-1)-A077990(n-2) +3*A005314(n+1) -4*A005314(n)+A005314(n-1). - R. J. Mathar, Feb 25 2024
Previous Showing 31-32 of 32 results.