cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A364990 Coreful triperfect numbers: numbers k such that csigma(k) = 3*k, where csigma(k) is the sum of the coreful divisors of k (A057723).

Original entry on oeis.org

3600, 25200, 28224, 39600, 46800, 61200, 68400, 82800, 104400, 111600, 133200, 141120, 147600, 154800, 169200, 190800, 212400, 219600, 241200, 255600, 262800, 277200, 284400, 298800, 310464, 320400, 327600, 349200, 363600, 366912, 370800, 385200, 392400, 406800
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k, or rad(d) = rad(k), where rad(k) is the largest squarefree divisor of k (A007947) (the term "coreful divisor" was used by Hardy and Subbarao, 1983).
If k is a term, then also m*k is, for any squarefree m coprime to k. Thus there are infinitely many coreful triperfect numbers, and all of them can be generated from the sequence of primitive terms, which is the subsequence of powerful terms of this sequence. This sequence is c(n) = A064549(A005820(n)), i.e., the triperfect numbers (A005820), multiplied by their squarefree kernel (A007947): 3600, 28224, 1071645696, 1651818858099200, 532098668445696, 317519577357516800, ...
The asymptotic density of this sequence is Sum_{i>=1} beta(c(i))/c(i), where beta(n) = (6/Pi^2) * Product_{p|n} (p/(p+1)) = 0.0000797856... . If there are only 6 triperfect numbers, then the exact value of this density is 18575679807276818039685539/(23589576231586703755916083200 * Pi^2).

Examples

			3600 is in the sequence since its coreful divisors are {30, 60, 90, 120, 150, 180, 240, 300, 360, 450, 600, 720, 900, 1200, 1800, 3600}, whose sum is 10800 = 3 * 3600.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1)-1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[500000], s[#] == 3*# &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, sigma(f[i, 1]^f[i, 2]) - 1);}
    is(n) = s(n) == 3*n;

A379593 Numbers that set records in A379592.

Original entry on oeis.org

8, 32, 128, 512, 2048, 8192, 20736, 41472, 82944, 165888, 186624, 373248, 746496, 1492992, 2985984, 5971968, 6718464, 11943936, 23887872, 26873856, 53747712, 107495424, 214990848, 241864704, 429981696, 859963392, 967458816, 1719926784, 3439853568, 3869835264, 7464960000
Offset: 1

Views

Author

Michael De Vlieger, Dec 30 2024

Keywords

Comments

Proper subset of the intersection of A025487 and A320966.
Let k be a powerful number (in A001694) and let coreful d | k be such that k/d is also coreful, i.e., rad(d) = rad(d/k) = rad(k), where rad = A007947 is the squarefree kernel. Suppose d < d/k. Then coreful d may either divide k/d or not (indeed, if d/k < d, k/d may either divide d or not).
Then we have either d | k/d (the cardinality of such divisors is A379592(n) for k = A320966(n)) or d does not divide k/d (the cardinality of such divisors is A379552(n) for k = A376936(n)). (The case d = k/d, both certainly coreful, of course pertains to perfect squares k in A000290.)
Coreful divisors are counted by A361430 across natural numbers, and A370329 across powerful numbers A001694. Numbers that set records in A361430 (and A370329) are in A005934 (highly powerful numbers), with records in A036965.

Examples

			Let b(n) = A379592(n).
Table showing exponents of prime power factors of a(n) for n = 1..12. Example: a(7) = 20736 = 2^8*3^4, so "8.4" appears in the "exp." column.
   n      a(n)  exp. b(a(n))
  --------------------------
   1        8    3       1   2*4
   2       32    5       2   2*16 = 4*8
   3      128    7       3   2*64 = 4*32 = 8*16
   4      512    9       4   2*256 = 4*128 = 8*64 = 16*32
   5     2048   11       5   2*1024 = 4*512 = 8*256 = 16*128 = 32=64
   6     8192   13       6   2*4096 = 4*2048 = 8*1024 = 16*512 = 32*256 = 64*128
   7    20736    8.4     7
   8    41472    9.4     8
   9    82944   10.4     9
  10   165888   11.4    10
  11   186624    8.6    11
  12   373248    9.6    12
		

Crossrefs

Programs

  • Mathematica
    (* Load function f at A025487 *)
    r = 0; s = Union@ Flatten@ f[10]; nn = Length[s];
    rad[x_] := Times @@ FactorInteger[x][[All, 1]];
      Transpose@ Reap[Monitor[
        Do[k = s[[i]];
          If[# > r, r = #; Sow[k]] &@
            Count[Transpose@ {#, k/#} &@ #[[2 ;; Ceiling[Length[#]/2]]] &@ Divisors[k],
              _?(And[rad[#1] == rad[#2],
                Xor[Divisible[#2, #1],
                    Divisible[#1, #2]]] & @@ # &)], {i, nn}], {i, nn}] ][[-1, 1]]

A085627 Number of divisors of n-th highly powerful number.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 15, 16, 18, 20, 24, 25, 28, 30, 32, 35, 36, 40, 42, 45, 48, 50, 54, 96, 96, 105, 108, 112, 120, 120, 128, 135, 140, 144, 160, 168, 180, 192, 200, 200, 216, 224, 225, 240, 240, 252, 264, 270, 280, 280, 300, 315, 330, 576, 560, 360, 600, 576, 648, 640, 675, 672
Offset: 1

Views

Author

Jason Earls, Jul 10 2003

Keywords

Comments

560 is the first term that is less than the preceding term. - David Wasserman, Feb 03 2005

Crossrefs

Programs

  • Mathematica
    a = {1}; b = {1}; f[n_] := Times @@ Last /@ FactorInteger[n]; Do[If[f@ n > Max[b], And[AppendTo[b, f@ n], AppendTo[a, n]]], {n, 1000000}]; DivisorSigma[0, #] &@ a (* Michael De Vlieger, Aug 28 2015 *)
  • PARI
    {prdex(n)=local(s, fac); s=1; fac=factor(n); for(k=1,matsize(fac)[1],s=s*fac[k,2]); return(s)} {dhp(m)=local(rec); rec=0; for(n=1,m,if(prdex(n)>rec,rec=prdex(n); print1(numdiv(n)",")))}

Formula

a(n) = A000005(A005934(n)). - Amiram Eldar, Jul 01 2019

Extensions

More terms from David Wasserman, Feb 03 2005
Two missing terms added by Walter Roscello, Aug 28 2015

A192636 Powerful sums of two powerful numbers.

Original entry on oeis.org

8, 9, 16, 25, 32, 36, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000, 1024, 1089, 1125, 1152, 1156, 1225
Offset: 1

Views

Author

Keywords

Comments

Browning & Valckenborgh conjecture that a(n) ~ kn^2 with k approximately 0.139485255. See their Conjecture 1 and equation (14). Their Theorems 1 and 2 establish upper and lower asymptotic bounds.

Crossrefs

Programs

  • Mathematica
    With[{m = 1225}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; Intersection[pow, Plus @@@ Tuples[pow, {2}]]] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    isPowerful(n)=if(n>3,vecmin(factor(n)[,2])>1,n==1)
    sumset(a,b)={
      my(c=vectorsmall(#a*#b));
      for(i=1,#a,
        for(j=1,#b,
          c[(i-1)*#b+j]=a[i]+b[j]
        )
      );
      vecsort(c,,8)
    }; selfsum(a)={
      my(c=vectorsmall(binomial(#a+1,2)),k);
      for(i=1,#a,
        for(j=i,#a,
          c[k++]=a[i]+a[j]
        )
      );
      vecsort(c,,8)
    };
    list(lim)={
      my(v=select(isPowerful, vector(floor(lim),i,i)));
      select(n->n<=lim && isPowerful(n), Vec(selfsum(v)))
    };

Formula

Numbers k such that there exists some a, b, c with A001694(a) + A001694(b) = k = A001694(c).

Extensions

Corrected (on the advice of Donovan Johnson) by Charles R Greathouse IV, Sep 25 2012

A335853 Numbers that are highly powerful in Gaussian integers.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 100, 200, 400, 500, 800, 1000, 2000, 4000, 5000, 8000, 10000, 18000, 20000, 27000, 36000, 40000, 50000, 54000, 80000, 90000, 108000, 135000, 180000, 216000, 270000, 450000, 540000, 810000, 1080000, 1350000, 1620000, 2160000, 2700000
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2020

Keywords

Comments

Numbers with a record value of the product of the exponents in the prime factorization in Gaussian integers (A335852). Equivalently, numbers with a record number of powerful divisors in Gaussian integers.
The corresponding record values are 1, 2, 4, 6, 8, 10, 12, 16, 24, 32, 36, 40, 54, 72, 90, 96, ... (see the link for more values).

Examples

			The factorization of 1, 2, 3 and 4 in Gaussian integers are 1, -i*(1+i)^2, 3 and -(1+i)^4, and the corresponding products of the exponents are 1, 2, 1 and 4. The record values, 1, 2 and 4, occur at 1, 2 and 4 that are the first 3 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[Times @@ FactorInteger[#, GaussianIntegers -> True][[All, -1]] &, 10^5]}, Map[FirstPosition[s, #][[1]] &, Union@FoldList[Max, s]]] (* after Michael De Vlieger at A005934 *)

A349111 Powerful superabundant numbers: numbers m such that psigma(m)/m > psigma(k)/k for all k < m, where psigma(k) is the sum of powerful divisors of k (A183097).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 432, 864, 1296, 1728, 2592, 5184, 10368, 15552, 31104, 54000, 108000, 162000, 216000, 324000, 648000, 1296000, 1944000, 3240000, 3888000, 6480000, 9720000, 19440000, 38880000, 58320000, 74088000, 111132000, 222264000, 444528000, 666792000
Offset: 1

Views

Author

Amiram Eldar, Nov 08 2021

Keywords

Comments

The corresponding record values are 1, 5/4, 13/8, 29/16, 61/32, 125/64, ...
The least term k with psigma(k)/k > m, for m = 2, 3, ..., is 144, 54000, 666792000, ...

Crossrefs

Subsequence of A349112.
Similar sequences: A002110 (unitary), A037992 (infinitary), A061742, A292984, A329882, A348273.

Programs

  • Mathematica
    f[p_,e_] := (p^(e+1)-1)/(p-1) - p; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; rm = 0; Do[r1 = s[n]/n; If[r1 > rm, rm = r1; AppendTo[seq, n]], {n, 1, 10^6}]; seq

A363330 Numbers with a record number of divisors that are both coreful and infinitary.

Original entry on oeis.org

1, 8, 128, 216, 3456, 27000, 279936, 432000, 9261000, 34992000, 148176000, 8957952000, 12002256000, 197222256000, 3072577536000, 7501410000000, 15975002736000, 433297296432000, 1920360960000000, 4089600700416000, 9984376710000000, 35097081010992000, 2128789617370416000
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

Indices of records in A363329.
The corresponding record values are 1, 3, 7, 9, 21, 27, 49, 63, 81, 147, 189, 315, ... (see the link for more values).

Crossrefs

Cf. A363329.
Subsequence of A025487.
Similar sequences: A005934, A037992.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1] - 1; d[1] = 1; d[n_] := Times @@ f @@@ FactorInteger[n];
    v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq

A363333 Numbers with a record number of divisors that are both coreful and bi-unitary.

Original entry on oeis.org

1, 8, 32, 128, 216, 864, 3456, 7776, 13824, 31104, 108000, 279936, 432000, 972000, 1728000, 3888000, 15552000, 34992000, 62208000, 97200000, 139968000, 248832000, 333396000, 559872000, 592704000, 874800000, 1333584000, 5334336000, 12002256000, 21337344000, 33339600000
Offset: 1

Views

Author

Amiram Eldar, May 28 2023

Keywords

Comments

Indices of records in A363332.
The corresponding record values are 1, 3, 5, 7, 9, 15, 21, 25, 27, 35, 45, 49, 63, 75, 81, ... (see the link for more values).

Crossrefs

Cf. A363332.
Subsequence of A025487.
Similar sequences: A005934, A293185.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, e - 1]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 120]
    v = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]];
    seq = {}; dm = 0; Do[If[(dk = d[v[[k]]]) > dm, dm = dk; AppendTo[seq, v[[k]]]], {k, 1, Length[v]}]; seq

A141422 Positions of highly powerful numbers in the EKG sequence.

Original entry on oeis.org

1, 3, 8, 17, 31, 64, 122, 136, 199, 270, 411, 817, 1234, 1649, 2484, 3321, 4981, 7480, 9993
Offset: 1

Views

Author

Parthasarathy Nambi, Aug 05 2008

Keywords

Examples

			10368 is a highly powerful number located at position 9993 in the EKG sequence.
		

Crossrefs

Previous Showing 21-29 of 29 results.