A094346 Another version of triangular array in A036970: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 2, 0, 3, 8, 6, 0, 17, 54, 60, 24, 0, 155, 556, 762, 480, 120, 0, 2073, 8146, 12840, 10248, 4200, 720, 0, 38227, 161424, 282078, 263040, 139440, 40320, 5040, 0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 3, 8, 6; 0, 17, 54, 60, 24; 0, 155, 556, 762, 480, 120; 0, 2073, 8146, 12840, 10248, 4200, 720; 0, 38227, 161424, 282078, 263040, 139440, 40320, 5040; 0, 929569, 4163438, 7886580, 8240952, 5170800, 1965600, 423360, 40320; ...
Links
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- J. M. Gandhi, Research Problems: A Conjectured Representation of Genocchi Numbers, Amer. Math. Monthly 77 (1970), no. 5, 505-506. MR1535914
- Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. (Has a signed version of this triangle, see p. 1).
Programs
-
Mathematica
G[_, 1] = 1; G[x_, n_] := G[x, n] = (x+1)^2 G[x+1, n-1] - x^2 G[x, n-1] // Expand; row[0] = {1}; row[n_] := CoefficientList[x G[x, n], x]; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Aug 17 2018 *)
-
PARI
{T(n, k) = local( A = x); if( k<0 || k>n, 0, for( j = 1, n, A = x^2 * ( subst(A, x, x+1) - A)); polcoeff( A, k+1))} /* Michael Somos, Apr 10 2011 */
Formula
For n>=1, Sum_{k =1..n} T(n, k)*x^(k-1) = G(x, n), n-th Gandhi polynomial; the Gandhi polynomials are defined by G(x, n) = (x+1)^2*G(x+1, n-1) - x^2*G(x, n-1), G(x, 1) = 1. Sum_{k =0..n} T(n, k)*2^(2n-k) = A000182(n+1), tangent numbers. Sum_{k =0..n} T(n, k) = A001469(n+1), Genocchi numbers of first kind.
Sum_{k = 0..n} T(n, k)*2^(n-k) = A002105(n+1). - Philippe Deléham, Jun 10 2004
Comments