cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 115 results. Next

A248272 Egyptian fraction representation of sqrt(46) (A010500) using a greedy function.

Original entry on oeis.org

6, 2, 4, 31, 13905, 492036837, 305826422756315436, 925021938815488805990118508463313646, 9816702673371796111477307067848281658737547920701725975736611619650989298
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 46]]

A248275 Egyptian fraction representation of sqrt(50) (A010503) using a greedy function.

Original entry on oeis.org

7, 15, 228, 65875, 47908261511, 2667718882316939409472, 10322125191786944152031025720794295875480056, 2674110852900041212107591350675026110499276180787546409661407265673151668416641308455602
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 50]]

A248285 Egyptian fraction representation of sqrt(60) (A010513) using a greedy function.

Original entry on oeis.org

7, 2, 5, 22, 1953, 8757320, 200363231947338, 251498638872293007053426171621, 66042587251601360877390227281939923689168739166891158256860, 4700611214316865673372383919277278315652700484280159329574134292008149533706899635266740297016908819979207833123794661
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Cf. A010513 (decimal expansion), A040052 (continued fraction).
Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 60]]

A248289 Egyptian fraction representation of sqrt(65) (A010517) using a greedy function.

Original entry on oeis.org

8, 17, 292, 104588, 38180791782, 3220186027640389204438, 514699020130621511259820819971940751063386467, 352263737947121519527774929870101098823418099762680744113382295431246430941544915986778001
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 65]]

A248305 Egyptian fraction representation of sqrt(82) (A010533) using a greedy function.

Original entry on oeis.org

9, 19, 364, 158568, 7483072370239, 800584801436242461055205607, 804967345737393522659886914511772380605508613608740482, 1952430246641956813527923846249169608538413464343857806735578675242145974375232933703999085491264008473613681
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 82]]

A142725 Denominators of an Egyptian fraction for 1/Sqrt[17] = 0.242535625...

Original entry on oeis.org

5, 24, 1151, 6727710, 97954001297811, 12083213443785578998604325741, 2111557350230332542969297514824119073134312726162508784857, 5126406954746155312559668571658555244727150562238830979161154018392336359308299948544053564102183773577991816755308
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[17], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A142726 Denominators of an Egyptian fraction for 1/Sqrt[20] = 0.2236067977...

Original entry on oeis.org

5, 43, 2850, 9380555, 131539825706327, 25568462906010064277774504354, 1702783284378767791750994476557209698496292570221862357616, 9282809298390896944529722953873240985108041182275536393531898614770319137100914187360035180181565645720539192811580
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[20], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144985 Denominators of an Egyptian fraction for 1/Sqrt[6]=0.408248290463863...

Original entry on oeis.org

3, 14, 287, 484228, 624850913463, 832896370765715143490072, 7620764031777359266114991754446899201236457828088, 74466937067918173179787895367258766085493130434332689333832927329763999409894621431449951498850730
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[6], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144986 Denominators of an Egyptian fraction for 1/Sqrt[7]=0.377964473...

Original entry on oeis.org

3, 23, 868, 1242123, 2776290405248, 11161696107523243223922840, 261638153821481209775970282548980739821715625184617, 189055393361766552088064316219614698328133697744770641431804048878604165927723712902309210241320415402
Offset: 1

Views

Author

Artur Jasinski, Oct 07 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[7], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144987 Denominators of an Egyptian fraction for 1/sqrt(8) = 0.35355339059327376223...

Original entry on oeis.org

3, 50, 4545, 28362567, 1497340447522680, 4387088233067304774404776830059, 21181904263756953142587802868501086598875135541314844201016311, 850362874661071143418760124561686027269498941223459043945221634054718647025769989728300760240990642339926562157579631197188
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[8], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
Previous Showing 21-30 of 115 results. Next