A248272
Egyptian fraction representation of sqrt(46) (A010500) using a greedy function.
Original entry on oeis.org
6, 2, 4, 31, 13905, 492036837, 305826422756315436, 925021938815488805990118508463313646, 9816702673371796111477307067848281658737547920701725975736611619650989298
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 46]]
A248275
Egyptian fraction representation of sqrt(50) (A010503) using a greedy function.
Original entry on oeis.org
7, 15, 228, 65875, 47908261511, 2667718882316939409472, 10322125191786944152031025720794295875480056, 2674110852900041212107591350675026110499276180787546409661407265673151668416641308455602
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 50]]
A248285
Egyptian fraction representation of sqrt(60) (A010513) using a greedy function.
Original entry on oeis.org
7, 2, 5, 22, 1953, 8757320, 200363231947338, 251498638872293007053426171621, 66042587251601360877390227281939923689168739166891158256860, 4700611214316865673372383919277278315652700484280159329574134292008149533706899635266740297016908819979207833123794661
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 60]]
A248289
Egyptian fraction representation of sqrt(65) (A010517) using a greedy function.
Original entry on oeis.org
8, 17, 292, 104588, 38180791782, 3220186027640389204438, 514699020130621511259820819971940751063386467, 352263737947121519527774929870101098823418099762680744113382295431246430941544915986778001
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 65]]
A248305
Egyptian fraction representation of sqrt(82) (A010533) using a greedy function.
Original entry on oeis.org
9, 19, 364, 158568, 7483072370239, 800584801436242461055205607, 804967345737393522659886914511772380605508613608740482, 1952430246641956813527923846249169608538413464343857806735578675242145974375232933703999085491264008473613681
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 82]]
A142725
Denominators of an Egyptian fraction for 1/Sqrt[17] = 0.242535625...
Original entry on oeis.org
5, 24, 1151, 6727710, 97954001297811, 12083213443785578998604325741, 2111557350230332542969297514824119073134312726162508784857, 5126406954746155312559668571658555244727150562238830979161154018392336359308299948544053564102183773577991816755308
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[17], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A142726
Denominators of an Egyptian fraction for 1/Sqrt[20] = 0.2236067977...
Original entry on oeis.org
5, 43, 2850, 9380555, 131539825706327, 25568462906010064277774504354, 1702783284378767791750994476557209698496292570221862357616, 9282809298390896944529722953873240985108041182275536393531898614770319137100914187360035180181565645720539192811580
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[20], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144985
Denominators of an Egyptian fraction for 1/Sqrt[6]=0.408248290463863...
Original entry on oeis.org
3, 14, 287, 484228, 624850913463, 832896370765715143490072, 7620764031777359266114991754446899201236457828088, 74466937067918173179787895367258766085493130434332689333832927329763999409894621431449951498850730
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[6], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144986
Denominators of an Egyptian fraction for 1/Sqrt[7]=0.377964473...
Original entry on oeis.org
3, 23, 868, 1242123, 2776290405248, 11161696107523243223922840, 261638153821481209775970282548980739821715625184617, 189055393361766552088064316219614698328133697744770641431804048878604165927723712902309210241320415402
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[7], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144987
Denominators of an Egyptian fraction for 1/sqrt(8) = 0.35355339059327376223...
Original entry on oeis.org
3, 50, 4545, 28362567, 1497340447522680, 4387088233067304774404776830059, 21181904263756953142587802868501086598875135541314844201016311, 850362874661071143418760124561686027269498941223459043945221634054718647025769989728300760240990642339926562157579631197188
Offset: 1
Cf.
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003.
-
a = {}; k = N[1/Sqrt[8], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)