A144998
Denominators of an Egyptian fraction for 1/Sqrt[23] = 0.208514414...
Original entry on oeis.org
5, 118, 25102, 3098488794, 14128130137829281462, 485584015670165519973653386760357384912, 314540562973936255020142367073783456663449048259761865641894253491267983125499
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[23], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A144999
Denominators of an Egyptian fraction for 1/Sqrt[24] = 0.20412414523...
Original entry on oeis.org
5, 243, 112122, 26152629083, 896398925366011889258, 3015244976414322457555463218875802090369767, 64507244652051292999487806064926450248354528876835935231409173161547519285211444127477
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[24], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A145000
Denominators of an Egyptian fraction for 1/Sqrt[26] = 0.196116135138...
Original entry on oeis.org
6, 34, 26523, 1562387946, 2711148268367282801, 12495200597418585355327760706720583332, 249241682973403163668428197861526798556923221288701528163601730404432403391
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[26], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A145001
Denominators of an Egyptian fraction for 1/Sqrt[27] = 0.19245...
Original entry on oeis.org
6, 39, 7023, 123003383, 30009972034709604, 2284252506432349791885755473056239, 9742053754355575036462674739863470880211838469604940624314922115462
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[27], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A145002
Denominators of an Egyptian fraction for 1/Sqrt[28] = 0.1889822365...
Original entry on oeis.org
6, 45, 10713, 324564970, 180179551708668257, 66100039883449216745724149409859980, 5970964373869392740489950614747811004676487208587055130790649750452409
Offset: 1
A069139,
A006487,
A006526,
A006525,
A006524,
A001466,
A110820,
A117116,
A118323,
A118324,
A118325,
A144835,
A132480-
A132574,
A069261,
A144984-
A145003
-
a = {}; k = N[1/Sqrt[28], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)
A248236
Egyptian fraction representation of sqrt(6) (A010464) using a greedy function.
Original entry on oeis.org
2, 3, 9, 199, 49572, 30799364495, 1408429952507887000310, 3677260735023142918878205127156519291320765, 102293202370266874495262346614859561910266026424997387777849999466054887759064682698213
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 6]]
A248237
Egyptian fraction representation of sqrt(7) (A010465) using a greedy function.
Original entry on oeis.org
2, 2, 7, 346, 250326, 159992246122, 43126926376468440463866, 2067900185855597116733968004943580535040713497, 14833490144163739987168640921306687956266487136609932761918465200939453258507455567518894133
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 7]]
A248238
Egyptian fraction representation of sqrt(8) (A010466) using a greedy function.
Original entry on oeis.org
2, 2, 4, 13, 665, 3467111, 21396320062803, 658294037732639489281287503, 22388829144690900907571301740725846339553919136567283158, 522702581366233755060474792093646176756253098085471164612763539572950704431022333880928617340303584572474648760
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 8]]
A248240
Egyptian fraction representation of sqrt(11) (A010468) using a greedy function.
Original entry on oeis.org
3, 4, 16, 243, 104559, 25176928409, 26586186736052347315834, 1862816215759124563815793524962166009780011752, 5214712907768239185916350444296489272388117885310572145230445264540008760076034857528421553
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 11]]
A248241
Egyptian fraction representation of sqrt(12) (A010469) using a greedy function.
Original entry on oeis.org
3, 3, 8, 174, 47270, 3322246062, 13585339584457844199, 266643312158266377656241697792775202384, 221110316712057155914682414678073188192934894445719392090279403577596961625414
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 12]]