cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A144996 Denominators of an Egyptian fraction for 1/Sqrt[21] = 0.21821789...

Original entry on oeis.org

5, 55, 27723, 1084714750, 2579620657453546201, 120904392155429552198250382953194665437, 29567118984689950525496948880094499522270777838300280083816338513462653571335
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[21], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144997 Denominators of an Egyptian fraction for 1/Sqrt[22] = 0.21320071635561...

Original entry on oeis.org

5, 76, 23353, 1760750176, 11091689481099523647, 624609172612912277752469960143750195996, 1154850060305896828989836424061308107033056930212520517493782451684269172225140
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[22], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144998 Denominators of an Egyptian fraction for 1/Sqrt[23] = 0.208514414...

Original entry on oeis.org

5, 118, 25102, 3098488794, 14128130137829281462, 485584015670165519973653386760357384912, 314540562973936255020142367073783456663449048259761865641894253491267983125499
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[23], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A144999 Denominators of an Egyptian fraction for 1/Sqrt[24] = 0.20412414523...

Original entry on oeis.org

5, 243, 112122, 26152629083, 896398925366011889258, 3015244976414322457555463218875802090369767, 64507244652051292999487806064926450248354528876835935231409173161547519285211444127477
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[24], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A145000 Denominators of an Egyptian fraction for 1/Sqrt[26] = 0.196116135138...

Original entry on oeis.org

6, 34, 26523, 1562387946, 2711148268367282801, 12495200597418585355327760706720583332, 249241682973403163668428197861526798556923221288701528163601730404432403391
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[26], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A145001 Denominators of an Egyptian fraction for 1/Sqrt[27] = 0.19245...

Original entry on oeis.org

6, 39, 7023, 123003383, 30009972034709604, 2284252506432349791885755473056239, 9742053754355575036462674739863470880211838469604940624314922115462
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[27], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A145002 Denominators of an Egyptian fraction for 1/Sqrt[28] = 0.1889822365...

Original entry on oeis.org

6, 45, 10713, 324564970, 180179551708668257, 66100039883449216745724149409859980, 5970964373869392740489950614747811004676487208587055130790649750452409
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[28], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (*Artur Jasinski*)

A304722 Denominators of sign-alternating Egyptian fraction expansion for 1/e.

Original entry on oeis.org

2, 7, 93, 62095, 4699899044, 1362649441404437841952, 4130413532696748407987517870209604665529390, 36989955466818654815296233286537259039977157978192273501528892262212989509848377838825
Offset: 0

Views

Author

Greg Huber, May 17 2018

Keywords

Examples

			a(0) = 2 because 1/e is between 1/2 and 1/3 and 1/2 > 1/e, i.e., floor(1/(1/e)) = 2, and
a(1) = 7 because floor(1/(1/a(0) - 1/e)).
		

Crossrefs

Previous Showing 21-28 of 28 results.