cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 244 results. Next

A378003 Decimal expansion of Pi*G - 7*zeta(3)/4, where G = A006752.

Original entry on oeis.org

7, 7, 3, 9, 9, 1, 2, 0, 1, 0, 7, 8, 8, 7, 1, 1, 5, 2, 3, 2, 8, 0, 3, 8, 3, 8, 3, 8, 7, 6, 5, 1, 0, 3, 1, 6, 2, 7, 6, 1, 2, 8, 3, 8, 8, 4, 5, 6, 8, 0, 6, 0, 3, 2, 6, 2, 5, 7, 2, 0, 5, 8, 0, 3, 0, 6, 6, 4, 4, 5, 7, 9, 2, 6, 5, 7, 4, 3, 0, 3, 4, 6, 7, 7, 5, 5, 8, 5, 3, 6, 4, 1, 4, 6, 9, 0, 6, 2, 9, 2
Offset: 0

Views

Author

Stefano Spezia, Nov 14 2024

Keywords

Examples

			0.773991201078871152328038383876510316276128388...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi Catalan-7Zeta[3]/4,10,100][[1]]
  • PARI
    Pi*Catalan-7*zeta(3)/4 \\ Charles R Greathouse IV, Feb 12 2025

Formula

Equals Sum_{n>=1} (-1)^(n+1)/n^2 Sum_{k=0..n-1} 1/(2*k + 1) (see Finch).

A378021 Decimal expansion of Pi*G - 33*zeta(3)/16, where G = A006752.

Original entry on oeis.org

3, 9, 8, 3, 4, 8, 4, 1, 8, 8, 4, 1, 4, 9, 7, 9, 3, 8, 1, 4, 0, 6, 2, 0, 2, 0, 8, 4, 0, 4, 1, 8, 2, 1, 9, 4, 1, 6, 2, 0, 7, 0, 1, 7, 2, 1, 0, 0, 4, 0, 0, 1, 3, 2, 0, 6, 5, 6, 3, 5, 7, 1, 9, 2, 6, 2, 3, 2, 0, 1, 3, 9, 9, 5, 7, 5, 2, 0, 1, 9, 3, 9, 9, 4, 2, 9, 1, 0, 7, 5, 9, 1, 1, 7, 7, 3, 3, 6, 1, 1
Offset: 0

Views

Author

Stefano Spezia, Nov 14 2024

Keywords

Examples

			0.3983484188414979381406202084041821941620701721...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi Catalan-33Zeta[3]/16,10,100][[1]]

Formula

Equals Sum_{n>=1} (-1)^(n+1)/n^2 Sum_{k=1..n} 1/(k + n) (see Finch).

A378910 Decimal expansion of 2*G/Pi, where G = A006752.

Original entry on oeis.org

5, 8, 3, 1, 2, 1, 8, 0, 8, 0, 6, 1, 6, 3, 7, 5, 6, 0, 2, 7, 6, 7, 6, 8, 9, 1, 2, 9, 3, 6, 7, 8, 9, 8, 3, 7, 7, 2, 8, 1, 3, 2, 3, 0, 7, 9, 7, 1, 6, 7, 4, 5, 4, 0, 5, 2, 2, 0, 0, 3, 1, 3, 8, 2, 2, 3, 4, 9, 5, 2, 7, 3, 7, 6, 0, 8, 7, 7, 7, 2, 3, 4, 5, 3, 2, 5, 3, 6, 4, 8, 6, 0, 6, 2, 6, 8, 1, 1, 7, 8
Offset: 0

Views

Author

Stefano Spezia, Dec 10 2024

Keywords

Examples

			0.58312180806163756027676891293678983772813230797167...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.10, p. 232.

Crossrefs

Programs

  • Mathematica
    RealDigits[2Catalan/Pi,10,100][[1]]

Formula

Equals log(A130834).
Equals 2*A143233.

A378911 Decimal expansion of sqrt(2)*exp(2*G/Pi), where G = A006752.

Original entry on oeis.org

2, 5, 3, 3, 7, 3, 7, 2, 7, 9, 4, 8, 5, 8, 4, 1, 9, 0, 9, 5, 8, 3, 2, 8, 9, 6, 3, 4, 0, 4, 1, 8, 6, 3, 2, 9, 1, 6, 8, 9, 6, 3, 0, 8, 0, 8, 8, 4, 2, 0, 3, 0, 3, 1, 2, 6, 1, 1, 9, 8, 2, 3, 9, 4, 7, 4, 2, 4, 7, 1, 1, 5, 9, 1, 0, 0, 4, 2, 4, 9, 7, 3, 3, 7, 7, 1, 8, 3, 0, 1, 2, 7, 6, 4, 8, 1, 3, 5, 6, 5
Offset: 1

Views

Author

Stefano Spezia, Dec 10 2024

Keywords

Examples

			2.5337372794858419095832896340418632916896308088420...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 3.10, p. 233.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[2]*Exp[2Catalan/Pi],10,100][[1]]

A383851 Decimal expansion of exp(8*G/Pi)*((1 - exp(-Pi/2))/(1 + exp(-Pi/2)))^2, where G is Catalan's constant (A006752).

Original entry on oeis.org

4, 4, 3, 1, 2, 0, 1, 3, 0, 7, 1, 9, 4, 1, 9, 9, 1, 9, 7, 0, 8, 2, 3, 6, 7, 7, 2, 8, 3, 5, 5, 2, 8, 7, 2, 9, 3, 2, 8, 3, 8, 0, 1, 5, 2, 8, 1, 0, 1, 2, 2, 7, 4, 7, 3, 5, 6, 3, 2, 0, 9, 2, 1, 4, 3, 8, 9, 6, 8, 0, 7, 5, 8, 5, 8, 7, 0, 0, 3, 6, 5, 3, 8, 3, 2, 5, 6, 4, 2, 0
Offset: 1

Views

Author

Paolo Xausa, May 13 2025

Keywords

Examples

			4.4312013071941991970823677283552872932838015281012...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Exp[8*Catalan/Pi]*((1 - #)/(1 + #))^2 & [Exp[-Pi/2]], 10, 100]]

Formula

Equals Product_{i=0..oo} (1 + 4/(2*i+1)^4)^((-1)^i*(2*i+1)) (from Ramanujan).

A345413 Decimal expansion of exp(gamma + M)*(G - 7*zeta(3)/(4*Pi))/4, where gamma is Euler's constant (A001620), M is Mertens's constant (A077761) and G is Catalan's constant (A006752).

Original entry on oeis.org

1, 4, 2, 4, 8, 6, 7, 6, 7, 5, 6, 2, 9, 7, 6, 6, 7, 7, 6, 6, 0, 1, 3, 1, 1, 9, 0, 3, 8, 5, 1, 6, 4, 8, 5, 8, 2, 5, 6, 9, 9, 0, 6, 5, 0, 1, 9, 5, 6, 1, 7, 1, 5, 4, 1, 8, 7, 3, 9, 8, 3, 8, 3, 4, 1, 3, 2, 1, 8, 0, 8, 4, 4, 0, 3, 7, 1, 5, 8, 3, 2, 8, 8, 1, 9, 5, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 18 2021

Keywords

Comments

This constant is notable for being the asymptotic limit in a formula derived by Sinha and Wolf (2010) which "brings together the elements from nine different topics of number theory" (see the Formula section).

Examples

			0.14248676756297667766013119038516485825699065019561...
		

Crossrefs

Programs

  • Mathematica
    M = EulerGamma - NSum[PrimeZetaP[k]/k, {k, 2, Infinity}, WorkingPrecision -> 300, NSumTerms -> 300]; RealDigits[Exp[EulerGamma + M]*(Catalan - 7*Zeta[3]/(4*Pi))/4, 10, 100][[1]]

Formula

Equals lim_{n->oo} (1/log(n)^2) * Sum_{k=1..n} (1/gamma_k) * (1/k + 1/prime(k)) * (arctan(gamma_k/gamma_n))^2 * exp(H(k) + Sum_{i=1..k} 1/prime(i))), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number, and gamma_k is the imaginary part of the k-th nontrivial zero of the Riemann zeta function.

A377764 Decimal expansion of (Pi/8)*exp(4*G/Pi), where G is the Catalan constant (A006752).

Original entry on oeis.org

1, 2, 6, 0, 5, 2, 9, 6, 1, 2, 8, 2, 9, 3, 8, 6, 4, 1, 0, 5, 5, 4, 5, 3, 6, 3, 3, 0, 1, 3, 5, 4, 0, 9, 8, 4, 2, 2, 0, 2, 6, 6, 9, 2, 3, 9, 3, 5, 1, 5, 8, 8, 7, 2, 2, 6, 1, 0, 7, 7, 6, 8, 3, 3, 7, 3, 4, 3, 3, 9, 2, 6, 0, 5, 9, 0, 0, 9, 3, 5, 1, 1, 8, 8, 6, 7, 0, 5, 0, 7
Offset: 1

Views

Author

Paolo Xausa, Nov 06 2024

Keywords

Examples

			1.26052961282938641055453633013540984220266923935...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi/8*Exp[4*Catalan/Pi], 10, 100]]

Formula

Equals Product_{k >= 1} (1 - 1/(2*k+1)^2)^((-1)^k*(2*k+1)) (from Ramanujan).
Equals Product_{k >= 1} (1 - 1/A016754(k))^((-1)^k*A005408(k)).

A377962 Decimal expansion of (8*G - Pi*log(2 + sqrt(3)))/3, where G = A006752.

Original entry on oeis.org

1, 0, 6, 3, 4, 5, 9, 8, 3, 3, 1, 1, 7, 2, 2, 7, 9, 3, 0, 7, 6, 7, 5, 0, 0, 3, 4, 5, 5, 8, 8, 4, 8, 2, 7, 5, 0, 5, 7, 1, 1, 3, 5, 2, 9, 5, 9, 0, 0, 5, 5, 5, 9, 9, 7, 5, 2, 2, 3, 8, 9, 6, 6, 1, 3, 1, 4, 2, 9, 7, 5, 8, 0, 5, 2, 1, 1, 0, 8, 4, 5, 6, 2, 1, 7, 6, 4, 5, 6, 2, 8, 1, 2, 8, 2, 3, 0, 8, 6, 9
Offset: 1

Views

Author

Stefano Spezia, Nov 12 2024

Keywords

Examples

			1.0634598331172279307675003455884827505711352959...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Mathematica
    RealDigits[(8Catalan-Pi Log[2+Sqrt[3]])/3,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(binomial(2*k,k)*(2*k + 1)^2) (see Finch and Shamos).

A377981 Decimal expansion of G/2 - Pi*log(2)/8, where G = A006752.

Original entry on oeis.org

1, 8, 5, 7, 8, 4, 5, 3, 5, 8, 0, 0, 6, 5, 9, 2, 4, 1, 2, 1, 4, 7, 1, 5, 6, 4, 5, 1, 8, 6, 4, 9, 0, 3, 1, 1, 9, 6, 9, 7, 5, 1, 7, 2, 4, 5, 9, 4, 6, 7, 5, 2, 8, 0, 3, 4, 2, 5, 2, 4, 6, 5, 3, 1, 6, 1, 5, 9, 2, 9, 4, 1, 2, 4, 1, 0, 3, 4, 6, 3, 6, 4, 3, 5, 8, 8, 7, 1, 3, 6, 2, 6, 1, 7, 2, 4, 6, 7, 4, 9
Offset: 0

Views

Author

Stefano Spezia, Nov 13 2024

Keywords

Examples

			0.18578453580065924121471564518649031196975172459...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 55.

Crossrefs

Programs

  • Mathematica
    RealDigits[Catalan/2-Pi Log[2]/8,10,100][[1]]

Formula

Equals Sum_{n>=0} (-1)^(n+1)/(2*n + 1) Sum_{k=0..n-1} 1/(2*k + 1) (see Finch).
Equals Integral_{x=0..Pi/4} x*tan(x) dx (see Shamos).
Equals A006752/2 - A102886.

A378025 Decimal expansion of 1/2 - log(2)/4 - G/Pi, where G = A006752.

Original entry on oeis.org

0, 3, 5, 1, 5, 2, 3, 0, 0, 8, 2, 9, 1, 9, 4, 8, 9, 2, 5, 0, 7, 3, 0, 7, 5, 1, 3, 1, 6, 7, 0, 6, 0, 9, 3, 9, 1, 1, 7, 0, 5, 8, 8, 1, 2, 4, 2, 4, 0, 9, 8, 9, 1, 6, 2, 0, 8, 8, 2, 8, 4, 2, 8, 5, 1, 4, 9, 0, 3, 9, 5, 7, 6, 2, 7, 1, 3, 7, 4, 5, 9, 3, 7, 1, 9, 0, 7, 3, 4, 3, 9, 4, 7, 7, 6, 1, 2, 6, 9, 2, 0
Offset: 0

Views

Author

Stefano Spezia, Nov 14 2024

Keywords

Examples

			0.035152300829194892507307513167060939117058812424...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.7.2, p. 56.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2-Log[2]/4-Catalan/Pi,10,100,-1][[1]]

Formula

Equals Sum_{n>=1} zeta(2*n)/(2^(4*n)*(2*n + 1)) (see Finch).
Previous Showing 11-20 of 244 results. Next