cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 108 results. Next

A054544 Engel series expansion (or "Egyptian product") for Khintchine's constant.

Original entry on oeis.org

1, 1, 2, 3, 9, 70, 117, 503, 648, 1078, 12868, 41235, 178650, 377670, 394301, 546185, 2600672, 8729780, 41318679, 83367169, 525961060, 561571346, 1556964264, 1868773845, 15139200289, 27297789005, 30324107039, 56699922000
Offset: 0

Views

Author

Jeppe Stig Nielsen, Apr 09 2000

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 59-65.

Crossrefs

A059188 Engel expansion of Gamma(1/3) = 2.6789385....

Original entry on oeis.org

1, 1, 2, 3, 14, 33, 57, 236, 6280, 7170, 172302, 24568434, 32871132, 43231756, 60680523, 83128444, 720494727, 803406064, 1804216488, 6655647717, 9106036988, 14962799365, 37839117297, 121819278396, 262108609568
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

A059189 Engel expansion of Gamma(2/3) = 1.35412.

Original entry on oeis.org

1, 3, 17, 17, 50, 79, 796, 3687, 7074, 9098, 95915, 118514, 133188, 186305, 209314, 666015, 5735240, 7685979, 11174747, 97173279, 269061009, 569125952, 932655002, 7282946876, 9919537325, 52110120678, 70254144261
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A073006.

Programs

  • Mathematica
    EngelExp[ A_, n_ ] := Join[ Array[ 1&, Floor[ A ] ], First@Transpose@NestList[ {Ceiling[ 1/Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ] ], Expand[ #[ [ 1 ] ]#[ [ 2 ] ]-1 ]}&, {Ceiling[ 1/(A-Floor[ A ]) ], A-Floor[ A ]}, n-1 ] ]

A063184 Engel expansion of Sum_{k>=0} 1/(1 + k)^k.

Original entry on oeis.org

1, 2, 4, 36, 2330, 3274, 7195, 28106, 38508, 74032, 74935, 203763, 264407, 431066, 1679581, 2473728, 2790505, 9118184, 10686256, 39154390, 64918230, 3725272877, 6503732261, 10906782833, 33507112881, 34193678041
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(1) = 1.6284737129015844470558891432618830316...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063185 Engel expansion of Sum_{k>=0} 1/(2 + k)^k.

Original entry on oeis.org

1, 3, 5, 15, 20, 124, 141, 1085, 1221, 5267, 9814, 9899, 179888, 531293, 43914936, 59108249, 129482155, 290253117, 297264974, 329981693, 515700524, 1791622856, 29237782307, 289017844013, 2187297805011, 20282473409970
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(2) = 1.4046684715031192197179531135647252212...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063186 Engel expansion of Sum_{k>=0} 1/(3 + k)^k.

Original entry on oeis.org

1, 4, 6, 13, 16, 31, 131, 231, 578, 905, 1649, 4810, 5999, 10249, 11962, 21338, 229345, 404066, 772217, 1646462, 2129025, 235494066, 559730937, 1287457726, 1549953698, 2919657850, 23892156516, 52085560558, 70347157214
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(3) = 1.2950786268784303709733480860835436581...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063187 Engel expansion of Sum_{k>=0} 1/(4 + k)^k.

Original entry on oeis.org

1, 5, 7, 12, 800, 1502, 3021, 5079, 6325, 17537, 50021, 158855, 826545, 5023575, 5097327, 6369490, 17535161, 19462254, 22535278, 24898987, 55666978, 111142756, 305716101, 2653533055, 3591521863, 4889613852, 10577043282
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(4) = 1.2309553591249981798150126937918121309...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063188 Engel expansion of Sum_{k>=0} 1/(5 + k)^k.

Original entry on oeis.org

1, 6, 8, 13, 19, 21, 105, 401, 1053, 2012, 4310, 114743, 235156, 287799, 1269345, 1481217, 1978865, 2703836, 3103386, 3325474, 18167905, 553255504, 782224772, 1039603284, 26121336847, 37996375306, 60661762577, 109713190320
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(5) = 1.1891909643804311990212726717131587411...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063189 Engel expansion of Sum_{k>=0} 1/(6 + k)^k.

Original entry on oeis.org

1, 7, 9, 13, 132, 259, 756, 995, 1217, 1790, 3809, 6320, 17298, 63963, 266138, 821069, 3300319, 4218118, 4403814, 7172972, 20058471, 92458049, 191069103, 765926110, 822857354, 2489215358, 2980617344, 5257976545, 5926840761, 11328877119, 45478158116, 66167647170
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(6) = 1.1599604457220200725212487379412204309...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063190 Engel expansion of Sum_{k>=0} 1/(7 + k)^k.

Original entry on oeis.org

1, 8, 10, 14, 36, 45, 88, 102, 114, 432, 4369, 9183, 15670, 31307, 103514, 511249, 1673274, 2394998, 3225410, 4732293, 54612351, 55335052, 220482735, 39208626697, 290846809341, 296349507792, 2280942643369, 2891972596111
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(7) = 1.1384182162015123957749881105729298508...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]
Previous Showing 71-80 of 108 results. Next