cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 108 results. Next

A063191 Engel expansion of Sum_{k>=0} 1/(8 + k)^k.

Original entry on oeis.org

1, 9, 11, 15, 25, 27, 36, 173, 202, 1965, 10312, 13538, 31564, 39844, 88358, 90936, 171767, 798975, 1350952, 1934096, 4998490, 6950469, 16097930, 30366857, 201980012, 280003359, 726993911, 6157450525, 25921409405, 26415716358
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(8) = 1.1219134834160251891529193531149802991...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063192 Engel expansion of Sum_{k>=0} 1/(9 + k)^k.

Original entry on oeis.org

1, 10, 12, 16, 21, 22, 33, 64, 64, 372, 7928, 10206, 18400, 319831, 429477, 588460, 849875, 859279, 2903676, 11021989, 14742559, 16613535, 48017191, 329292950, 3988366898, 5315516684, 19567917130, 21634744969, 23775894403
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(9) = 1.1088801303029550442121544797829556538...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063193 Engel expansion of Sum_{k>=0} 1/(10 + k)^k.

Original entry on oeis.org

1, 11, 13, 17, 19, 22, 39, 46, 95, 100, 202, 716, 1008, 1347, 3544, 4174, 27864, 51834, 81170, 115510, 172502, 1297395, 1428481, 3429593, 8484143, 16796993, 35875141, 202879810, 560789726, 953079326, 1456311045, 2218799342
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(10) = 1.0983361113176944131706689076969241474...

Crossrefs

Cf. A006784 for definition of Engel expansion.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A063194 Engel expansion of 1 + Sum_{k>=1} 1/k^k.

Original entry on oeis.org

1, 1, 4, 7, 7, 11, 80, 114, 6099, 11431, 26617, 33585, 56088, 61344, 194790, 234794, 1389968, 1786243, 2418760, 2647328, 3746318, 4952495, 5249786, 5341636, 10517386, 55449405, 79637649, 561022295, 625320951, 3650616781
Offset: 1

Views

Author

Olivier Gérard, Jul 10 2001

Keywords

Comments

Shgz(0) = 2.2912859970626635404072825905956005414... = 1 + A073009.

Crossrefs

Cf. A006784 for definition of Engel expansion, A073009.

Programs

  • Mathematica
    ToEngel[ x_, n_Integer ] := Rest@First@Transpose@NestList[ {Ceiling[ 1/# ], #}&[ Times@@#-1 ]&, {1, Abs[ x ]+1}, n ]

A067914 Engel expansion of zeta(6)=sum(i>0,1/i^6).

Original entry on oeis.org

1, 58, 170, 386, 5254, 66282, 599652, 868113, 3766902, 103572028, 168604143, 184143987, 435313165, 487337902, 2137572181, 7806336112, 58951218998, 88988779166, 98134403047, 151936444428, 445419603341, 712997180935
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

A067915 Engel expansion of zeta(7)=sum(i>0,1/i^7).

Original entry on oeis.org

1, 120, 523, 1543, 1615, 9192, 16003, 21589, 101625, 148947, 169047, 362415, 497588, 745709, 815536, 4121913, 59871203, 199990957, 309564563, 361924763, 1029742912, 1571746050, 7713398235, 18093587867, 81964002218, 483653860925
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

A067916 Engel expansion of zeta(8)=sum(i>0,1/i^8).

Original entry on oeis.org

1, 246, 331, 357, 602, 13543, 13977, 41685, 42358, 81233, 1797406, 3474721, 3635552, 12183608, 79438338, 101944448, 874415778, 1751624804, 3935310958, 4054291158, 8855245981, 16925204733, 70558648332, 168243185799
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

A067917 Engel expansion of zeta(9)=sum(i>0,1/i^9).

Original entry on oeis.org

1, 498, 5568, 6050, 13355, 19997, 86532, 1232762, 55372414, 58828570, 515325171, 585021906, 3531704172, 8467462253, 33628341236, 39825271855, 103454395889, 619628068650, 864282158571, 2124680840763, 4385336400732, 7477492931412
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

A067918 Engel expansion of zeta(10) = Sum_{i>0} 1/i^10.

Original entry on oeis.org

1, 1006, 1844, 1943, 2121, 6730, 9457, 16986, 26554, 51607, 190310, 624191, 982911, 8532607, 228180184, 328852129, 1087944970, 3446300146, 6297250622, 13963928263, 21739950459, 22065516615, 40578950043, 147724913629, 979260576959, 988238658616, 3024618853544
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.
Cf. A013668.

Programs

  • PARI
    \\ a(1)=1 and with 1500 significant digits:
    s=zeta(10); for(i=1,30,s=s*ceil(1/s)-1; print1(ceil(1/s),","); );

A067920 Engel expansion of sin(2).

Original entry on oeis.org

2, 2, 2, 4, 11, 14, 57, 100, 1778, 2355, 7690, 21334, 89831, 126718, 365351, 665175, 914152, 1469797, 3554254, 25042522, 190651419, 580715831, 1803513148, 3705699670, 44927205487, 232354919706, 1600668490436, 7538452976365, 12294187702836, 28817421277388
Offset: 1

Views

Author

Benoit Cloitre, Mar 03 2002

Keywords

Crossrefs

See A006784 for explanation of Engel expansions.

Programs

  • Mathematica
    EngelExp[A_, n_]:=Join[Array[1&, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[ #[[1]]#[[2]]-1]], Expand[ #[[1]]#[[2]]-1]}&, {Ceiling[1/(A-Floor[A])], A-Floor[A]}, n-1]]; EngelExp[N[Sin[2], 7!], 30] (* Georg Fischer, Nov 20 2020 *)
  • PARI
    my(r=sin(2)); for(i=1, 20, my(s=r*ceil(1/r)-1); print1(ceil(1/r), ", "); r=s); /* Benoit Cloitre [amended by Georg Fischer, Nov 20 2020] */

Extensions

a(1)=2 inserted and a(29),a(30) from Georg Fischer, Nov 20 2020
Previous Showing 81-90 of 108 results. Next