A091638
Number of primes less than 10^n which do not contain the digit 4.
Original entry on oeis.org
4, 22, 136, 903, 6361, 46545, 354123, 2761106, 21925170, 176544507, 1437663500, 11814853749, 97837428598, 815398741896
Offset: 1
a(2) = 22 because of the 25 primes less than 10^2, 3 have at least one digit 4; 25-3 = 22.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 4] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091639
Number of primes less than 10^n which do not contain the digit 5.
Original entry on oeis.org
3, 22, 136, 905, 6310, 46549, 354910, 2765749, 21955845, 176781643, 1439380189, 11827571824, 97933795005, 816144146010
Offset: 1
a(2) = 22 because of the 25 primes less than 10^2, 3 have at least one digit 5; 25-3 = 22.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 5] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import primerange
def a(n): return sum('5' not in str(p) for p in primerange(2, 10**n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 22 2021
A091640
Number of primes less than 10^n which do not contain the digit 6.
Original entry on oeis.org
4, 23, 136, 897, 6367, 46706, 355148, 2770239, 21984207, 176966593, 1440765209, 11838096715, 98014747908, 816769206831
Offset: 1
a(2) = 23 because of the 25 primes less than 10^2, 2 have at least one digit 6; 25-2 = 23.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 6] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use slower primerange for larger terms
def a(n): return sum('6' not in str(p) for p in sieve.primerange(2, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 23 2021
A091641
Number of primes less than 10^n which do not contain the digit 7.
Original entry on oeis.org
3, 16, 100, 680, 4773, 34992, 266823, 2079512, 16503238, 132852644, 1081509855, 8885472675, 73563855306, 612982476612
Offset: 1
a(2) = 16 because of the 25 primes less than 10^2, 9 have at least one digit 7; 25-9=16.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 7] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import primerange
def a(n): return sum('7' not in str(p) for p in primerange(2, 10**n))
print([a(n) for n in range(1, 7)]) # Michael S. Branicky, Mar 16 2021
A091642
Number of primes less than 10^n which do not contain the digit 8.
Original entry on oeis.org
4, 23, 141, 915, 6375, 46799, 355805, 2774348, 22023132, 177273427, 1443074791, 11855541525, 98146301284, 817786989282
Offset: 1
a(2) = 23 because of the 25 primes less than 10^2, 2 have at least one digit 8; 25-2 = 23.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 8] == {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use slower primerange for larger terms
def a(n): return sum('8' not in str(p) for p in sieve.primerange(2, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 23 2021
A091644
Number of primes less than 10^n which have at least one digit 0.
Original entry on oeis.org
0, 0, 15, 219, 2470, 26185, 266713, 2658107, 26198216, 256516296, 2501246232, 24320647270, 236032108530, 2287868820615
Offset: 1
a(3) = 15 because of the 168 primes less than 10^3, 15 have at least one 0 digit.
-
NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 0] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use primerange for larger terms
def digs0(n): return '0' in str(n)
def aupton(terms):
ps, alst = 0, []
for n in range(1, terms+1):
ps += sum(digs0(p) for p in sieve.primerange(10**(n-1), 10**n))
alst.append(ps)
return alst
print(aupton(7)) # Michael S. Branicky, Apr 25 2021
A091646
Number of primes less than 10^n having at least one digit 2.
Original entry on oeis.org
1, 3, 29, 352, 3357, 32393, 312424, 3014171, 29016211, 279171099, 2685272908, 25829666453, 248507003625, 2391688694305
Offset: 1
a(2) = 3 because of the 25 primes less than 10^2, 3 have at least one digit 2.
A091647
Number of primes less than 10^n having at least one digit 3.
Original entry on oeis.org
1, 9, 66, 561, 4877, 43685, 399564, 3694303, 34433999, 322852288, 3041362298, 28758431735, 272777483044, 2594081699837
Offset: 1
a(2) = 9 because of the 25 primes less than 10^2, 9 have at least one digit 3.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 3] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
A091707
Number of primes less than 10^n having at least one digit 6.
Original entry on oeis.org
0, 2, 32, 332, 3225, 31792, 309431, 2991216, 28863327, 278085918, 2677289604, 25769815303, 248050788931, 2388172543971
Offset: 1
a(1) = 0 because of the 4 primes less than 10^1, none have at least one digit 6.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 6] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
-
from sympy import sieve # use slower primerange for larger terms
def a(n): return sum('6' in str(p) for p in sieve.primerange(2, 10**n))
print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 23 2021
A091708
Number of primes less than 10^n having at least one digit 7.
Original entry on oeis.org
1, 9, 68, 549, 4819, 43506, 397756, 3681943, 34344296, 322199867, 3036544958, 28722439343, 272501681533, 2591959274190
Offset: 1
a(1) = 1 because of the 4 primes less than 10^1, 1 has at least one digit 7.
-
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = 1; Do[ While[ p = NextPrim[p]; p < 10^n, If[ Position[ IntegerDigits[p], 7] != {}, c++ ]]; Print[c]; p--, {n, 1, 8}] (* Robert G. Wilson v, Feb 02 2004 *)
Table[Count[Prime[Range[PrimePi[10^n]]],?(DigitCount[#,10,7]>0&)],{n,12}] (* _Harvey P. Dale, Mar 03 2013 *)
Comments