cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 269 results. Next

A268645 Union of the factorial numbers (A000142) and the double factorials numbers (A006882).

Original entry on oeis.org

1, 2, 3, 6, 8, 15, 24, 48, 105, 120, 384, 720, 945, 3840, 5040, 10395, 40320, 46080, 135135, 362880, 645120, 2027025, 3628800, 10321920, 34459425, 39916800, 185794560, 479001600, 654729075, 3715891200, 6227020800, 13749310575, 81749606400, 87178291200, 316234143225, 1307674368000
Offset: 1

Views

Author

Olivier Gérard, Oct 10 2014, revised by N. J. A. Sloane, Feb 09 2016

Keywords

References

  • Douglas Hoftstadter, Keynote lecture, DIMACS Workshop on Recognition of Integer Sequences, Oct. 10, 2014.

Crossrefs

See A248652 for another version.

Programs

A289850 Primes of the form k!2 - 4, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

11, 101, 941, 10391, 135131, 2027021, 654729071, 7905853580621, 221643095476699771871, 79777941814291672401518892224505807820921910393015244140621, 6462013286957625464523030270184970433494674741834234775390621
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 4, {i, 4, 100}], PrimeQ[#]&]
    Select[Range[4,100]!!-4,PrimeQ] (* Harvey P. Dale, Dec 16 2020 *)

Formula

a(n) = A006882(A123910(n)) - 4. - Elmo R. Oliveira, Apr 14 2025

A289851 Primes of the form k!2 - 8, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

7, 97, 937, 654729067, 13113070457687988603440617, 563862029680583509947946867, 536347102817482913555411512425352545980058003572241486357421867, 352999527454840466971061863960307904899505075341088595453568994140617
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 8, {i, 5, 100}], PrimeQ[#]&]
    Select[Range[5,100]!!-8,PrimeQ] (* Harvey P. Dale, Feb 06 2024 *)

Formula

a(n) = A006882(A259359(n)) - 8. - Elmo R. Oliveira, Apr 14 2025

Extensions

Definition corrected by Harvey P. Dale, Feb 06 2024

A289852 Primes of the form k!2 - 16, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

89, 929, 135119, 34459409, 7905853580609, 669325572332691496707919692320662308340434243618803739488329723923351785805848442856791239207612629457179653299076271283992814866750698368061459208762618124485015869140609
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 16, {i, 6, 100}], PrimeQ[#]&]

Formula

a(n) = A006882(A258616(n)) - 16. - Elmo R. Oliveira, Apr 14 2025

A289853 Primes of the form k!2 - 32, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

73, 25373791335626257947657609343, 488960130368663401543922783473071784646213671843, 2783097421140216173669833173554685254745646937315554685903182520041762334418182818434647284243799923238034037601108551025390593
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 32, {i, 6, 100}], PrimeQ[#]&]

Formula

a(n) = A006882(A262772(n)) - 32. - Elmo R. Oliveira, Apr 14 2025

A289854 Primes of the form k!2 - 64, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

41, 881, 10331, 34459361, 13749310511, 213458046676811, 6190283353629311, 319830986772877770815561, 563862029680583509947946811, 25373791335626257947657609311, 488960130368663401543922783473071784646213671811
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 64, {i, 7, 100}], PrimeQ[#]&]

Formula

a(n) = A006882(A259045(n)) - 64. - Elmo R. Oliveira, Apr 14 2025

A289855 Primes of the form k!2 - 128, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

10267, 135007, 13749310447, 1192568192774434123539907640497, 29215606371473169285018060091249259296747, 1009847364737869270905302433221592504062302663202724609247, 34720596058582394465875230149026168047833371128291024141249287753332469144201839599609247
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 128, {i, 8, 100}], PrimeQ[#]&]
    Select[Range[8,120]!!-128,PrimeQ] (* Harvey P. Dale, Dec 01 2018 *)

Formula

a(n) = A006882(A257864(n)) - 128. - Elmo R. Oliveira, Apr 14 2025

A289856 Primes of the form k!2 - 256, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

10139, 2026769, 13749310319, 213458046676619, 191898783962510369, 157952079428395476360490147277859119, 29215606371473169285018060091249259296619, 2395415678676082004163677716234578672981800778515369
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 256, {i, 8, 100}], PrimeQ[#]&]

Formula

a(n) = A006882(A265114(n)) - 256. - Elmo R. Oliveira, Apr 14 2025

A289857 Primes of the form k!2 - 512, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

433, 9883, 13749310063, 316234142713, 25373791335626257947657608863, 7297912393562140321551086320493608726062890113, 79777941814291672401518892224505807820921910393015244140113
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 512, {i, 9, 100}], PrimeQ[#]&]

Formula

a(n) = A006882(A258452(n)) - 512. - Elmo R. Oliveira, Apr 14 2025

A289858 Primes of the form k!2 - 1024, where k!2 is the double factorial number (A006882).

Original entry on oeis.org

9371, 34458401, 191898783962509601, 319830986772877770814601, 157952079428395476360490147277858351, 2987435000850314871976096554696085799164511452611632783323554397412108351, 283806325080779912837729172696128150920628587998105114415737667754150389601
Offset: 1

Views

Author

Robert Price, Jul 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
    Select[Table[MultiFactorial[i, 2] - 1024, {i, 10, 100}], PrimeQ[#]&]

Formula

a(n) = A006882(A258866(n)) - 1024. - Elmo R. Oliveira, Apr 15 2025
Previous Showing 31-40 of 269 results. Next