A335336
Carmichael numbers k such that k+1 is divisible by gpf(k)+1, where gpf = A006530.
Original entry on oeis.org
687979968481, 1928376089641, 2638625591701, 3148470889201, 3152088903601, 14682521533681, 19656816822721, 37333372057201, 47003559452641, 80643055074121, 129235662445121, 140940741166849, 196945133626801, 336301807660741, 345186571310209, 439931062854361
Offset: 1
For k = 687979968481 = 13 * 29 * 71 * 181 * 211 * 673, which is a Carmichael number, we have gpf(k) = 673. Thereafter we have gpf(k)+1 = 2 * 337 and k+1 = 2 * 337 * 347 * 911 * 3229, satisfying gpf(k)+1 | k+1.
- Amiram Eldar, Table of n, a(n) for n = 1..3150 (terms below 10^22, calculated using data from Claude Goutier; terms 1..459 from Daniel Suteu)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
- Richard J. McIntosh and Mitra Dipra, Carmichael numbers with p+1|n+1, Journal of Number Theory, Volume 147, February 2015, Pages 81-91.
- Wikipedia, Carmichael number.
- Wikipedia, Lucas-Carmichael number.
- Index entries for sequences related to Carmichael numbers.
A292353
Numbers n with a record number of Lucas-Carmichael numbers that can be generated from them using an adjusted version of Erdős's method.
Original entry on oeis.org
24, 72, 216, 240, 360, 720, 1440, 2160, 2520, 4320, 5040, 7560, 10080, 15120, 20160
Offset: 1
The set of primes for n = 24 is P={2, 3, 5, 7, 11, 23}. One subset, {5, 7, 11, 23} have c == -1 (mod n): c = 5*7*11*23 = 8855. 24 is the least number that generates Lucas-Carmichael numbers thus a(1)=24.
-
a = {}; cmax = 0; Do[p = Select[Divisors[n] - 1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c++], {j, 1, Length[ps]}]; If[c > cmax, cmax = c; AppendTo[a, n]], {n, 1, 1000}]; a
A292354
Numbers n with a record size of the largest Lucas-Carmichael number that can be generated from them using an adjusted version of Erdős's method.
Original entry on oeis.org
24, 48, 60, 144, 168, 240, 360, 720, 1440, 2520, 4320, 5040, 7560, 10080, 15120, 20160
Offset: 1
The set of primes for n = 24 is P={2, 3, 5, 7, 11, 23}. One subset, {5, 7, 11, 23} have c == -1 (mod n): c = 5*7*11*23 = 8855. 24 is the least number that generates Lucas-Carmichael numbers thus a(1)=24.
-
a = {}; cmax = 0; Do[p = Select[Divisors[n] - 1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c = Max[c, c1]], {j, 1, Length[ps]}]; If[c > cmax, cmax = c; AppendTo[a, n]], {n, 1, 1000}]; a
A292368
Numbers n with record number of primes p such that n*p is a Lucas-Carmichael number.
Original entry on oeis.org
1, 21, 55, 385, 49105, 136081, 701569, 2830465, 7996801, 29158921, 49268737, 52617601
Offset: 1
21 has one prime number, 19, such that 21*19 = 399 is a Lucas-Carmichael number. 55 has 2 prime numbers, 17 and 53, such that 55*17 = 935 and 55*53 = 2915 are Lucas-Carmichael numbers.
-
lucasCarmichaelQ[n_]:=!PrimeQ[n] && Union[Transpose[FactorInteger[n]][[2]]] == {1} && Union[Mod[n + 1, Transpose[FactorInteger[n]][[1]]+1]]=={0};
numSol[n_]:=Module[{m = 0}, ds = Divisors[n-1]; Do[p = ds[[k]]-1; If[!PrimeQ[p], Continue[]]; If[! lucasCarmichaelQ[p*n], Continue[]]; m++, {k, 1, Length[ds]}]; m]; numSolmax = -1; seq = {}; nums = {};
Do[m = numSol[n]; If[m > numSolmax, AppendTo[seq, n]; AppendTo[nums, m]; Print[{n, m}]; numSolmax = m], {n, 1, 100000}]; seq
A299213
Lucas-Carmichael numbers whose prime factors do not divide any smaller Lucas-Carmichael number.
Original entry on oeis.org
399, 935, 565861139, 5778659039, 22824172799, 49569379679, 221511111527, 572531110799, 745012846679
Offset: 1
565861139 = 193*1163*2521 and no smaller Lucas-Carmichael number is divisible by 193, 1163 or 2521.
-
a=readvec("b006972.txt"); print1(399); for(b=2,10000, e=true; f=factor(a[b]); for(d=1,#f[, 1], for(c=1,b-1, if(a[c]%f[d,1]==0, e=false))); if(e==true, print1(", ",a[b])))
A329223
Poulet numbers (Fermat pseudoprimes to base 2) that are congruent to either 3 or 27 (mod 80) and each prime factor is congruent to 3 mod 80.
Original entry on oeis.org
51962615262396907, 330468624532072027, 2255490055253468347, 18436227497407654507
Offset: 1
51962615262396907 is a term because it is a Fermat pseudoprime to base 2 and it is congruent to 27 (mod 80) and all of its prime factors (643, 154723, 522306163) are congruent to 3 mod 80.
-
isok(n) = ((n%80==3) || (n%80==27)) && (Mod(2, n)^(n-1) == 1) || return(0); my(f=factor(n)[,1]); (#f > 1) && (#select(p->p%80==3, f) == #f);
A356821
Lucas-Carmichael numbers k that have an abundancy index sigma(k)/k that is larger than the abundancy indices of all smaller Lucas-Carmichael numbers.
Original entry on oeis.org
399, 6304359999, 408598269695, 517270926095, 20203946790335
Offset: 1
-
lc = Import["https://oeis.org/A006972/b006972.txt", "Table"][[;; , 2]]; rm = 0; s = {}; Do[n = lc[[k]]; r = DivisorSigma[-1, n]; If[r > rm, AppendTo[s, n]; rm = r], {k, 1, Length[lc]}]; s
Comments