cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A352022 Number of spanning trees in a hexagon of size n in the hexagonal grid.

Original entry on oeis.org

1, 6, 176400, 95437674624600, 878617506040998925900403712, 134527385723138237635420920683683500322908000, 339161155484890894029987276076070590877762998258747782208794132480, 14004953513181662639884345044013838519837158205213642081126147144590500534440163767670000000
Offset: 0

Views

Author

Peter Kagey, Feb 28 2022

Keywords

Comments

The hexagon of size n in the hexagonal grid has A033581(n) = 6*n^2 vertices.

Crossrefs

Cf. A007341 (square in square grid), A116469 (rectangle in square grid), A174579 (triangle in triangular grid), A351888 (triangle in hexagonal grid), A351994 (hexagon in triangular grid).

A338832 Number of spanning trees in the k_1 X ... X k_j grid graph, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 4, 1, 15, 1, 384, 192, 56, 1, 31500, 1, 209, 2415, 42467328, 1, 49766400, 1, 2558976, 30305, 780, 1, 3500658000000, 100352, 2911, 8193540096000, 207746836, 1, 76752081000, 1, 20776019874734407680, 380160, 10864, 4140081, 242716067758080000000, 1
Offset: 1

Views

Author

Pontus von Brömssen, Nov 11 2020

Keywords

Comments

a(n) > 1 precisely when n is composite.

Examples

			The partition (2, 2, 1) has Heinz number 18 and the 3 X 3 X 2 grid graph has a(18) = 49766400 spanning trees.
		

Crossrefs

2 X n grid: A001353(n) = a(2*prime(n-1))
3 X n grid: A006238(n) = a(3*prime(n-1))
4 X n grid: A003696(n) = a(5*prime(n-1))
5 X n grid: A003779(n) = a(7*prime(n-1))
6 X n grid: A139400(n) = a(11*prime(n-1))
7 X n grid: A334002(n) = a(13*prime(n-1))
8 X n grid: A334003(n) = a(17*prime(n-1))
9 X n grid: A334004(n) = a(19*prime(n-1))
10 X n grid: A334005(n) = a(23*prime(n-1))
n X n grid: A007341(n) = a(prime(n-1)^2)
m X n grid: A116469(m,n) = a(prime(m-1)*prime(n-1))
2 X 2 X n grid: A003753(n) = a(4*prime(n-1))
2 X n X n grid: A067518(n) = a(2*prime(n-1)^2)
n X n X n grid: A071763(n) = a(prime(n-1)^3)
2 X ... X 2 grid: A006237(n) = a(2^n)

Formula

a(n) = Product_{n_1=0..k_1-1, ..., n_j=0..k_j-1; not all n_i=0} Sum_{i=1..j} (2*(1 - cos(n_i*Pi/k_i))) / Product_{i=1..j} k_i, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.

A340168 Decimal expansion of a constant related to the asymptotics of A004003.

Original entry on oeis.org

1, 1, 0, 8, 8, 6, 2, 2, 5, 8, 7, 8, 0, 7, 6, 7, 5, 1, 3, 2, 7, 6, 9, 5, 1, 1, 6, 2, 1, 3, 0, 8, 1, 9, 2, 9, 2, 6, 4, 5, 2, 6, 6, 1, 2, 6, 9, 6, 3, 5, 6, 9, 2, 2, 4, 3, 6, 2, 9, 4, 3, 1, 4, 1, 8, 4, 4, 7, 3, 5, 5, 6, 5, 3, 0, 9, 3, 4, 8, 6, 6, 3, 2, 1, 3, 4, 3, 9, 7, 1, 4, 6, 7, 5, 0, 7, 9, 0, 1, 5, 5, 7, 4, 0, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 30 2020

Keywords

Examples

			1.1088622587807675132769511621308192926452661269635692243629431418447355653...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*E^(Catalan/Pi)/(1 + Sqrt[2]), 10, 110][[1]]

Formula

Equals lim_{n->infinity} A004003(n) / ((sqrt(2)-1)^(2*n) * exp(4*G*n*(n+1)/Pi)), where G is the Catalan's constant A006752.
Equals 2*exp(G/Pi) / (1 + sqrt(2)), where G is Catalan's constant A006752.
Previous Showing 21-23 of 23 results.