A288879
Primes of the form k!3 + 3^3, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
29, 31, 37, 107, 307, 907, 12347, 4188827, 96342427, 2324549427227, 17961239296027, 52580450364682240027, 262134882788466688027, 142299187144047333874073600027, 1414585397090614713326770033423904956109645017737276725445918510284800000000027
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^3, {i, 0, 100}], PrimeQ[#]&]
A288880
Primes of the form k!3 + 3^4, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
83, 109, 12401, 58321, 24344401, 96342481, 2504902481, 26582634158080081, 1143053268797440081, 262134882788466688081, 427380210218181008588800081, 142299187144047333874073600081, 7825229077844441903818866688000081
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^4, {i, 0, 100}], PrimeQ[#]&]
Select[Table[Times@@Range[n,1,-3]+81,{n,100}],PrimeQ] (* Harvey P. Dale, Aug 13 2021 *)
A288881
Primes of the form k!3 + 3^5, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
271, 523, 1123, 24344563, 96342643, 608608243, 5577337931669504243, 52580450364682240243, 262134882788466688243, 13106744139423334400243, 694657439389436723200243, 7368624314106569113600243, 12931890526958090978845347074978621685760000243
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^5, {i, 0, 100}], PrimeQ[#]&]
A288882
Primes of the form k!3 + 3^6, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
733, 739, 757, 809, 1009, 1609, 13049, 210169, 81359229952729, 126757680265216729, 13106744139423334400729, 2295148179742698933452800729, 12931890526958090978845347074978621685760000729
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^6, {i, 0, 100}], PrimeQ[#]&]
A288883
Primes of the form k!3 + 3^7, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
2267, 2467, 3067, 5827, 60427, 1108747, 4190987, 24346507, 664565853954187, 3091650738178187, 262134882788466690187, 571241722682644258978777268224002187, 1189733928480144370053771930898033195089920002187, 17994728558292550488813850298696914425610240002187
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^7, {i, 0, 100}], PrimeQ[#]&]
A288884
Primes of the form k!3 + 3^8, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
6563, 6571, 6841, 2504908961, 17961239302561, 81359229958561, 664565853958561, 2295148179742698933452806561, 628962407176689215723405312006561, 43414370923880963682387072385024006561, 116346745870073113470947277571643877742200278220800006561
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^8, {i, 0, 100}], PrimeQ[#]&]
A288885
Primes of the form k!3 + 3^9, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
19687, 19763, 19963, 20563, 32003, 229123, 4208483, 24364003, 72642189283, 2324549446883, 5577337931669523683, 38900816605808456499219683, 26070192823309041523916819683
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^9, {i, 0, 100}], PrimeQ[#]&]
Select[Table[Times@@Range[n,1,-3]+19683,{n,100}],PrimeQ] (* Harvey P. Dale, Sep 18 2023 *)
A288886
Primes of the form k!3 + 3^10, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
59051, 59053, 59077, 59929, 608667049, 3091650738235049, 262134882788466747049, 17994728558292550488813850298696914425610240059049, 113024723205613715155108333435313153533542400059049
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3^10, {i, 0, 100}], PrimeQ[#]&]
Select[Table[Times@@Range[n,1,-3]+59049,{n,150}],PrimeQ] (* Harvey P. Dale, May 03 2020 *)
A288889
Primes of the form k!3+3, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
5, 7, 13, 31, 83, 283, 883, 3643, 12323, 58243, 1106563, 4188803, 2504902403, 17041024003, 72642169603, 2324549427203, 126757680265216003, 38900816605808456499200003, 26070192823309041523916800003, 254451773522587035734629406212096000003
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] + 3, {i, 0, 100}], PrimeQ[#]&]
A289634
Primes of the form k!3-3, where k!3 is the triple factorial number (A007661).
Original entry on oeis.org
7, 277, 877, 3637, 58237, 24344317, 17041023997, 44656330909544934316361777151999997, 3304568487306325139410771509247999997, 17994728558292550488813850298696914425610239999997, 2136063198892150618502015301628828867230815945271103455231999999997
Offset: 1
-
MultiFactorial[n_, k_] := If[n<1, 1, n*MultiFactorial[n-k, k]];
Select[Table[MultiFactorial[i, 3] - 3, {i, 4, 100}], PrimeQ[#]&]
Select[Table[Times@@Range[n,1,-3]-3,{n,2,200}],PrimeQ] (* Harvey P. Dale, Nov 25 2022 *)