cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-63 of 63 results.

A114420 Quadruple primorial n#### = n#4.

Original entry on oeis.org

1, 2, 3, 5, 7, 22, 39, 85, 133, 506, 1131, 2635, 4921, 20746, 48633, 123845, 260813, 1224014, 2966613, 8297615, 18517723, 89353022, 234362427, 688702045, 1648077347, 8667243134, 23670605127, 70936310635, 176344276129
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to quadruple factorial A007662 = n!!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n####)*((n-1)####)*((n-2)####)*((n-3)####) = n#. n#### is a k-almost prime for k = ceiling(n/4).

Examples

			n#### is also written n#4.
0#### = p(0) = 1.
1#### = p(1) = 2.
2#### = p(2) = 3.
3#### = p(3) = 5.
4#### = p(4)p(0) = 7*1 = 7.
5#### = p(5)p(1) = 11*2 = 22.
6#### = p(6)p(2) = 13*3 = 39.
7#### = p(7)p(3) = 17*5 = 85.
8#### = p(8)p(4)p(0) = 19*7*1 = 133.
9#### = p(9)p(5)p(1) = 23*11*2 = 506.
10#### = p(10)p(6)p(2) = 29*13*3 = 1131.
11#### = p(11)p(7)p(3) = 31*17*5 = 2635.
12#### = 37*19*7*1 = 4921.
13#### = 41*23*11*2 = 20746.
14#### = 43*29*13*3 = 48633.
15#### = 47*31*17*5 = 123845.
16#### = 53*37*19*7*1 = 260813.
17#### = 59*41*23*11*2 = 1224014.
18#### = 61*43*29*13*3 = 2966613.
19#### = 67*47*31*17*5 = 8297615.
20#### = 71*53*37*19*7*1 = 18517723.
21#### = 73*59*41*23*11*2 = 89353022.
22#### = 79*61*43*29*13*3 = 234362427.
23#### = 83*67*47*31*17*5 = 688702045.
24#### = 89*71*53*37*19*7*1 = 1648077347.
25#### = 97*73*59*41*23*11*2 = 8667243134.
26#### = 101*79*61*43*29*13*3 = 23670605127.
27#### = 103*83*67*47*31*17*5 = 70936310635.
28#### = 107*89*71*53*37*19*7*1 = 176344276129.
		

Crossrefs

Formula

a(n) = n#### = prime(n)*((n-4)####) = Prod[i == n mod 4, to n] prime(i). Notationally, prime(0) = 1; (-n)#### = 0#### = 1.

A114421 Quintuple primorial n##### = n#5.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 26, 51, 95, 161, 319, 806, 1887, 3895, 6923, 14993, 42718, 111333, 237595, 463841, 1064503, 3118414, 8795307, 19720385, 41281849, 103256791, 314959814, 905916621, 2110081195, 4499721541, 11668017383
Offset: 0

Views

Author

Jonathan Vos Post, Feb 12 2006

Keywords

Comments

This is to quintuple factorial A085157 = n!!!!!, as double primorial A079078 = n## is to double factorial A006882 = n!! and as primorial A002110 = n# is to factorial A000142 = n!. There is an obvious generalization to multiprimorial. (n#5)*((n-1)#5)*((n-2)#5)*((n-3)#5)*((n-4)#5) = n#. n#5 is a k-almost prime for k = ceiling(n/5).

Examples

			n##### is also written n#5.
0#5 = p(0) = 1.
1#5 = p(1) = 2.
2#5 = p(2) = 3.
3#5 = p(3) = 5.
4#5 = p(4) = 7.
5#5 = p(5)p(0) = 11*1 = 11.
6#5 = p(6)p(1) = 13*2 = 26.
7#5 = p(7)p(2) = 17*3 = 51.
8#5 = p(8)p(3) = 19*5 = 95.
9#5 = p(9)p(4) = 23*7 = 161.
10#5 = p(10)p(5)p(0) = 29*11*1 = 319.
11#5 = p(11)p(6)p(1) = 31*13*2 = 806.
12#5 = 37*17*3 = 1887.
13#5 = 41*19*5 = 3895.
14#5 = 43*23*7 = 6923.
15#5 = 47*29*11*1 = 14993.
16#5 = 53*31*13*2 = 42718.
17#5 = 59*37*17*3 = 111333.
18#5 = 61*41*19*5 = 237595.
19#5 = 67*43*23*7 = 463841.
20#5 = 71*47*29*11*1 = 1064503.
21#5 = 73*53*31*13*2 = 3118414.
22#5 = 79*59*37*17*3 = 8795307.
23#5 = 83*61*41*19*5 = 19720385.
24#5 = 89*67*43*23*7 = 41281849.
25#5 = 97*71*47*29*11*1 = 103256791.
26#5 = 101*73*53*31*13*2 = 314959814.
27#5 = 103*79*59*37*17*3 = 905916621.
28#5 = 107*83*61*41*19*5 = 2110081195.
29#5 = 109*89*67*43*23*7 = 4499721541.
30#5 = 113*97*71*47*29*11*1 = 11668017383.
		

Crossrefs

Formula

a(n) = n##### = prime(n)*((n-5)#####) = Prod[i == n mod 5, to n] prime(i). Notationally, prime(0) = 1; (-n)##### = 0#### = 1.

A114868 a(n) = floor(n^(n/4)/n!!!!).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 2, 3, 2, 3, 4, 7, 6, 7, 10, 17, 14, 18, 26, 41, 36, 44, 64, 104, 91, 112, 163
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2006

Keywords

Comments

This sequence is an approximation to a quadruple factorial analog of Stirling's approximation to the factorial function. Note that a(n) is exact for n = 1, 4, 8.

Examples

			a(8) = floor((8^2)/8!!!!) = floor((8^2)/32) = floor(2) = 2.
a(9) = floor((9^2.25)/9!!!!) = floor((9^2.25)/45) = floor(3.11769145) = 3.
a(16) = floor((16^4)/16!!!!) = floor((16^4)/6144) = floor(10.6666667) = 10.
a(20) = floor((20^5)/20!!!!) = floor((20^5)/122880) = floor(26.0416667) = 26.
		

Crossrefs

Formula

a(n) = floor(n^(n/4)/n!!!). a(n) = floor((A000312(n)^(1/4))/A007662(n)).
Previous Showing 61-63 of 63 results.