cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A172538 Number of n X n 0..1 arrays with row sums 13 and column sums 13.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 87178291200, 147320988741542099484000, 190637228506535883540302038364160000, 238871596129285108315684789088803525762942560000
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=13 of A008300.

A172540 Number of n X n 0..1 arrays with row sums 9 and column sums 9.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 3628800, 158815387962000, 9254768770160124288000, 769237071909157579108571190000, 96986285294151066094112970262797953280, 19092174983817380047229162651397270697765056000
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=9 of A008300.

A283627 The number of (n^2) X (n^2) real {0,1}-matrices the square of which is the all-ones matrix.

Original entry on oeis.org

1, 12, 1330560
Offset: 1

Views

Author

R. J. Mathar, Mar 12 2017

Keywords

Comments

These are real {0,1} matrices A such that A^2 = J, the all-ones matrix.
It is known that A must have dimension which is a square, so the sequence shows counts for 1 X 1, 4 X 4, 9 X 9, 16 X 16 matrices and so on.
It is also known that if A has dimension n^2 X n^2, then each row and column must contain exactly n 1's, and A has trace n.
a(3) = 1330560 is confirmed by W. Edwin Clark, Mar 12 2017, who says: (Start)
My method was to take the 6 matrices A1, A2, A3, A4, A5, A6 found by Knuth, which are representatives for the 6 distinct orbits of 9 x 9 matrices A such that A^2 = J under the action of the 9! permutation matrices acting by conjugation.
I found for each Ai the size n_i of the stabilizer of Ai. The stabilizer orders are [n_1,n_2,n_3,n_4,n_5,n_6] = [6,2,1,1,2,2], which implies that the cardinality of the union of all orbits is Sum(9!/n_i, i=1..6) = 1330560.
(End)

Examples

			Four of the 12 solutions for 4 X 4 are
  1 1 0 0
  0 0 1 1
  1 1 0 0
  0 0 1 1
.
  1 1 0 0
  0 0 1 1
  0 0 1 1
  1 1 0 0
.
  1 0 0 1
  0 1 1 0
  1 0 0 1
  0 1 1 0
.
  0 1 0 1
  1 0 1 0
  1 0 1 0
  0 1 0 1
.
Solutions for 9 X 9 are, for example,
  1 1 1 0 0 0 0 0 0
  0 0 0 1 0 1 1 0 0
  0 0 0 0 1 0 0 1 1
  1 1 1 0 0 0 0 0 0
  1 1 1 0 0 0 0 0 0
  0 0 0 1 0 1 1 0 0
  0 0 0 0 1 0 0 1 1
  0 0 0 1 0 1 1 0 0
  0 0 0 0 1 0 0 1 1
.
  1 1 1 0 0 0 0 0 0
  0 0 0 1 0 1 1 0 0
  0 0 0 0 1 0 0 1 1
  1 1 1 0 0 0 0 0 0
  1 1 1 0 0 0 0 0 0
  0 0 0 1 0 1 1 0 0
  0 0 0 0 1 0 0 1 1
  0 0 0 1 0 0 0 1 1
  0 0 0 0 1 1 1 0 0
.
  1 1 1 0 0 0 0 0 0
  0 0 0 1 0 1 1 0 0
  0 0 0 0 1 0 0 1 1
  1 1 1 0 0 0 0 0 0
  1 1 1 0 0 0 0 0 0
  0 0 0 1 0 1 0 0 1
  0 0 0 0 1 0 1 1 0
  0 0 0 1 0 1 0 0 1
  0 0 0 0 1 0 1 1 0
		

Crossrefs

Cf. A008300.
See also A283643.

Extensions

Edited by N. J. A. Sloane, Mar 12 2017

A364068 Triangle T(n,k) read by rows: Number of traceless binary n X n matrices with all row and column sums equal to k, 1<=k<=n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 9, 9, 1, 0, 44, 216, 44, 1, 0, 265, 7570, 7570, 265, 1, 0, 1854, 357435, 1975560, 357435, 1854, 1, 0, 14833, 22040361, 749649145, 749649145, 22040361, 14833, 1, 0, 133496, 1721632024
Offset: 1

Views

Author

R. J. Mathar, Jul 04 2023

Keywords

Examples

			    0
    1        0
    2        1         0
    9        9         1      0
   44      216        44      1    0
  265     7570      7570    265    1 0
 1854   357435   1975560 357435 1854 1 0
14833 22040361 749649145
		

Crossrefs

Cf. A000166 (k=1), A007107 (k=2), A284989 (see 1st col), A284990 (see 1st col, k=3), A007105 (k=3?), A284991 (see 1st col, k=4), A008300 (any trace)

Formula

T(n,n)=0. (k=n would require a 1 on the diagonal)
T(n,n-1)=1. (1 at all entries but the diagonal)
T(n,n-k) = T(n,k-1). (Flip entries 0<->1 and erase diagonal) - R. J. Mathar, Jul 26 2023

A172539 Number of n X n 0..1 arrays with row sums 10 and column sums 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 39916800, 21959547410077200, 14255616537578735986867200, 12163525741347497524178307740904300, 14962628816774970940772777740084998521738256
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=10 of A008300.

A172542 Number of n X n 0..1 arrays with row sums 16 and column sums 16.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 355687428096000, 3237415247416050491577971184000, 13564406360915457771720399143711430952267776000, 37911589613425952733393718264069147678877877626169022024515000
Offset: 0

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=16 of A008300.

A172543 Number of n X n 0..1 arrays with row sums 15 and column sums 15.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20922789888000, 10268902998771351157327104000, 2767806480542211571651550187279222472704000
Offset: 1

Views

Author

R. H. Hardin, Feb 06 2010

Keywords

Crossrefs

Column k=15 of A008300.

A383256 Number of n X n matrices of nonnegative entries with all columns summing to n and no horizontally adjacent zeros.

Original entry on oeis.org

1, 1, 7, 343, 125465, 366908001, 8698468668251, 1708834003295306868, 2810884261025802145414705, 39088555382409783097546399456477, 4626844513673581956954679383115038810744, 4688191496359773864437279635019555242588548880831
Offset: 0

Views

Author

John Tyler Rascoe, Apr 21 2025

Keywords

Examples

			a(1) = 1: [1]
a(2) = 7: [1,1]   [1,0]   [1,2]   [0,1]   [2,1]   [0,2]   [2,0]
          [1,1],  [1,2],  [1,0],  [2,1],  [0,1],  [2,0],  [0,2].
		

Crossrefs

Programs

  • Python
    # see links

Extensions

a(10)-a(11) from Bert Dobbelaere, Apr 23 2025
Previous Showing 21-28 of 28 results.