A230341
Number of permutations of [2n] in which the longest increasing run has length n.
Original entry on oeis.org
1, 1, 16, 293, 5811, 133669, 3574957, 109546009, 3788091451, 145957544981, 6201593613645, 288084015576169, 14525808779580645, 790129980885855401, 46120599397152203401, 2875600728737862162481, 190740227037467026439611, 13411608375592255857753781
Offset: 0
-
a:= proc(n) option remember; `if`(n<5, [1, 1, 16, 293, 5811][n+1],
(2*(n+1)*(26615475780292426*n^4 +2862121494132556*n^3
-240402559504315639*n^2 +79488454158677567*n
+119546195807549142)*a(n-1)
-n*(406022528821033256*n^4 -1031369150352151615*n^3
+11028208356875758*n^2 -1654923205028490137*n
+3900125789057762682)*a(n-2)
+2*(n-1)*(421508861354067594*n^4 -1543365451253363033*n^3
-602924004257000736*n^2 +6654606478117189961*n
-5221800341103267066)*a(n-3)
-4*(2*n-7)*(n-2)*(26655798868586248*n^3 +401269836638339496*n^2
-2000296275137853913*n +2124466470996744981)*a(n-4)
-8*(n-3)*(n-5)*(2*n-7)*(2*n-9)*(8655617328093650*n
-14323734034655567)*a(n-5)) / (n*(n+2)*(13307737890146213*n^2
-43906954139467620*n +22672341406878775)))
end:
seq(a(n), n=0..25);
-
b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]];
T[n_, k_] := b[0, n, 0, k] - b[0, n, 0, k + 1];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 19 2018, after Alois P. Heinz *)
A230342
Number of permutations of [2n+2] in which the longest increasing run has length n+2.
Original entry on oeis.org
1, 6, 67, 1024, 19710, 456720, 12372360, 383685120, 13406178240, 521194867200, 22318001798400, 1043827513344000, 52949040240096000, 2895555891900672000, 169823181579891840000, 10633812541718446080000, 708077586604965857280000, 49962245750984840232960000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+5*n, 2*(n+1)*(2*n+1)*
(n^3+6*n^2+12*n+11)*a(n-1)/((n+4)*(n^3+3*n^2+3*n+4)))
end:
seq(a(n), n=0..25);
A230343
Number of permutations of [2n+3] in which the longest increasing run has length n+3.
Original entry on oeis.org
1, 8, 99, 1602, 32010, 761904, 21064680, 663848640, 23500653120, 923616691200, 39914540709120, 1881558401184000, 96096062174112000, 5286518167746816000, 311689569962010240000, 19608741674518284288000, 1311187373310480906240000, 92868537238628772741120000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+7*n, 2*(2*n+3)*(n+1)*
(n^3+8*n^2+20*n+19)*a(n-1)/((n+5)*(n^3+5*n^2+7*n+6)))
end:
seq(a(n), n=0..25);
A230344
Number of permutations of [2n+4] in which the longest increasing run has length n+4.
Original entry on oeis.org
1, 10, 137, 2360, 49236, 1209936, 34288800, 1102187520, 39656131200, 1579837754880, 69064610186880, 3288126441600000, 169388400557376000, 9389435419203840000, 557323393281887232000, 35272416767753797632000, 2371290445442664345600000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+9*n, 2*(2*n+3)*(n+2)*
(n^3+10*n^2+30*n+29)*a(n-1)/((n+6)*(n^3+7*n^2+13*n+8)))
end:
seq(a(n), n=0..25);
A230345
Number of permutations of [2n+5] in which the longest increasing run has length n+5.
Original entry on oeis.org
1, 12, 181, 3322, 72540, 1845480, 53749920, 1766525760, 64739122560, 2619453513600, 116043825744000, 5588681114016000, 290812286052288000, 16263827918642304000, 973009916329651200000, 62017234027123415040000, 4195886889891954216960000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+11*n, 2*(2*n+5)*(n+2)*
(n^3+12*n^2+42*n+41)*a(n-1)/((n+7)*(n^3+9*n^2+21*n+10)))
end:
seq(a(n), n=0..25);
A230346
Number of permutations of [2n+6] in which the longest increasing run has length n+6.
Original entry on oeis.org
1, 14, 231, 4512, 103194, 2721600, 81591840, 2746068480, 102661518960, 4224849995520, 189917647920000, 9263565222912000, 487461283781472000, 27533206366009344000, 1661865400404937728000, 106768864984887705600000, 7275718977990226283520000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+13*n, 2*(2*n+5)*(n+5)*
(n+3)*(n^2+9*n+11)*a(n-1)/((n+4)*(n+8)*(n^2+7*n+3)))
end:
seq(a(n), n=0..25);
A230347
Number of permutations of [2n+7] in which the longest increasing run has length n+7.
Original entry on oeis.org
1, 16, 287, 5954, 142590, 3900480, 120466080, 4156079760, 158664456720, 6647965632000, 303540020784000, 15009431909472000, 799414492260384000, 45641465547245568000, 2781538377619921920000, 180263592116387619840000, 12381113998069012804608000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+15*n, 2*(n+3)*(2*n+7)*
(n^3+16*n^2+72*n+71)*a(n-1)/((n+9)*(n^3+13*n^2+43*n+14)))
end:
seq(a(n), n=0..25);
A230348
Number of permutations of [2n+8] in which the longest increasing run has length n+8.
Original entry on oeis.org
1, 18, 349, 7672, 192240, 5454144, 173606040, 6143195520, 239656253760, 10231052832000, 474832908950400, 23819880180096000, 1284985968634368000, 74207855717259264000, 4569213387521502720000, 298885288012537901875200, 20702796608070625112064000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+17*n, 2*(n+4)*(2*n+7)*
(n^3+18*n^2+90*n+89)*a(n-1)/((n+10)*(n^3+15*n^2+57*n+16)))
end:
seq(a(n), n=0..25);
A230349
Number of permutations of [2n+9] in which the longest increasing run has length n+9.
Original entry on oeis.org
1, 20, 417, 9690, 253776, 7465176, 244906200, 8891411760, 354610872000, 15432114297600, 728406536457600, 37090538241120000, 2027740775284224000, 118512161081233920000, 7376476698319125196800, 487273386402209523916800, 34055074238462266429440000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+19*n, 2*(2*n+9)*(n+4)*
(n^3+20*n^2+110*n+109)*a(n-1)/((n+11)*(n^3+17*n^2+73*n+18)))
end:
seq(a(n), n=0..25);
A230350
Number of permutations of [2n+10] in which the longest increasing run has length n+10.
Original entry on oeis.org
1, 22, 491, 12032, 328950, 10027440, 339006360, 12628788480, 515033719200, 22855760928000, 1097589192336000, 56754471481344000, 3145763658989952000, 186150029203211673600, 11717355323144959488000, 781981263963810054144000, 55165533654753963657216000
Offset: 0
-
a:= proc(n) option remember; `if`(n<2, 1+21*n, 2*(n+5)*(2*n+9)*
(n^3+22*n^2+132*n+131)*a(n-1)/((n+12)*(n^3+19*n^2+91*n+20)))
end:
seq(a(n), n=0..25);
Comments