cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A382949 a(n) = [(x*y)^n] Product_{k>=1} 1 / (1 - x^k - y^k)^n.

Original entry on oeis.org

1, 2, 48, 1190, 33648, 996292, 30626316, 965163166, 30995087312, 1009925740946, 33289934968618, 1107728567917028, 37149902553751260, 1254165186821008126, 42580296599191705276, 1452739684287637542640, 49776378699192072523920, 1711962807156690517057454
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^k - y^k)^n, {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 17}]

Formula

a(n) ~ c * d^n / n, where d = 36.5023860624117446261380818... and c = 0.08167564464819257818345... - Vaclav Kotesovec, Apr 10 2025

A301458 a(n) = [x^n] Product_{k>=1} 1/(1 - x^(k*(k+1)/2))^n.

Original entry on oeis.org

1, 1, 3, 13, 51, 201, 825, 3431, 14355, 60493, 256463, 1092268, 4669665, 20029036, 86148373, 371434173, 1604845715, 6946936628, 30121158813, 130795358333, 568709929191, 2475778867547, 10789659781640, 47069225185789, 205524447217185, 898163031782576, 3928112419640126
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2018

Keywords

Comments

Number of partitions of n into triangular numbers of n kinds.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - x^(k (k + 1)/2))^n, {k, 1, n}], {x, 0, n}], {n, 0, 26}]
Previous Showing 31-32 of 32 results.