cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A298810 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^8 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 30, 39, 50, 69, 88, 120, 150, 204, 260, 354, 448, 609, 768, 1047, 1328, 1806, 2284, 3108, 3930, 5352, 6776, 9219, 11662, 15873, 20082, 27336, 34592, 47076, 59560, 81066, 102570, 139605, 176642, 240411, 304180, 414006, 523830
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 9*x^6 + 9*x^7 + 9*x^8 + 6*x^9 + 6*x^10 + 3*x^11 + 3*x^12 - 2*x^14) / ((1 - x + x^2)*(1 + x + x^2)*(1 - x^2 - x^4 - x^6 + x^8)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^14 + 3*x^12 + 3*x^11 + 6*x^10 + 6*x^9 + 9*x^8 + 9*x^7 + 9*x^6 + 9*x^5 + 7*x^4 + 6*x^3 + 4*x^2 + 3*x + 1)/(x^12 - x^8 - 3*x^6 - x^4 +1).
a(n) = a(n-4) + 3*a(n-6) + a(n-8) - a(n-12) for n>12. - Colin Barker, Feb 06 2018

A298811 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^9 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 46, 56, 82, 104, 152, 192, 280, 350, 507, 642, 933, 1176, 1708, 2152, 3122, 3940, 5726, 7216, 10480, 13212, 19188, 24190, 35140, 44300, 64338, 81112, 117809, 148522, 215717, 271960, 394998, 497972, 723268, 911828, 1324360, 1669626, 2425008, 3057212, 4440362, 5597988, 8130648
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 21*x^7 + 23*x^8 + 27*x^9 + 27*x^10 + 27*x^11 + 27*x^12 + 27*x^13 + 27*x^14 + 25*x^15 + 21*x^16 + 18*x^17 + 15*x^18 + 12*x^19 + 9*x^20 + 6*x^21 + 3*x^22 - 2*x^23 - 2*x^24) / ((1 - x + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 2*x^2 + x^6 - 2*x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^24 - 2*x^23 + 3*x^22 + 6*x^21 + 9*x^20 + 12*x^19 + 15*x^18 + 18*x^17 + 21*x^16 + 25*x^15 + 27*x^14 + 27*x^13 + 27*x^12 + 27*x^11 + 27*x^10 + 27*x^9 + 23*x^8 + 21*x^7 + 19*x^6 + 16*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^22 + x^21 - x^18 - x^17 - 2*x^16 - 3*x^15 - 2*x^14 - x^13 - 2*x^12 - x^11 - 2*x^10 - x^9 - 2*x^8 - 3*x^7 - 2*x^6 - x^5 - x^4 + x + 1).
a(n) = -a(n-1) + a(n-4) + a(n-5) + 2*a(n-6) + 3*a(n-7) + 2*a(n-8) + a(n-9) + 2*a(n-10) + a(n-11) + 2*a(n-12) + a(n-13) + 2*a(n-14) + 3*a(n-15) + 2*a(n-16) + a(n-17) + a(n-18) - a(n-21) - a(n-22) for n>24. - Colin Barker, Feb 06 2018

A298812 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^10 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 62, 87, 114, 165, 216, 312, 408, 588, 766, 1104, 1444, 2082, 2720, 3921, 5122, 7383, 9642, 13902, 18164, 26184, 34204, 49308, 64412, 92856, 121298, 174867, 228438, 329313, 430188, 620160, 810132, 1167888, 1525642, 2199372, 2873104, 4141866, 5410628, 7799973, 10189318, 14688939
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Comments

The initial coefficients for the group S, T : S^2 = T^3 = (S*T)^m = 1 > approach A029744 as m increases.

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 10*x^6 + 12*x^7 + 12*x^8 + 12*x^9 + 12*x^10 + 9*x^11 + 9*x^12 + 6*x^13 + 6*x^14 + 3*x^15 + 3*x^16 - 2*x^18) / ((1 + x^2)^2*(1 + x^4)*(1 - 2*x^2 + x^4 - 2*x^6 + x^8)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^18 + 3*x^16 + 3*x^15 + 6*x^14 + 6*x^13 + 9*x^12 + 9*x^11 + 12*x^10 + 12*x^9 + 12*x^8 + 12*x^7 + 10*x^6 + 9*x^5 + 7*x^4 + 6*x^3 + 4*x^2 + 3*x + 1)/(x^16 - x^12 - 2*x^10 - 4*x^8 - 2*x^6 - x^4 + 1).
a(n) = a(n-4) + 2*a(n-6) + 4*a(n-8) + 2*a(n-10) + a(n-12) - a(n-16) for n>16. - Colin Barker, Feb 06 2018

A299253 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^12 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 126, 183, 242, 357, 472, 696, 920, 1356, 1792, 2640, 3486, 5136, 6788, 10002, 13216, 19473, 25730, 37911, 50092, 73806, 97518, 143688, 189860, 279744, 369628, 544620, 719612, 1060296, 1400980, 2064243, 2727504, 4018785, 5310068, 7824000, 10337932, 15232200, 20126468
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 10*x^6 + 12*x^7 + 13*x^8 + 15*x^9 + 15*x^10 + 15*x^11 + 15*x^12 + 12*x^13 + 12*x^14 + 9*x^15 + 9*x^16 + 6*x^17 + 6*x^18 + 3*x^19 + 3*x^20 - 2*x^22) / ((1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)*(1 - x^2 - x^4 - x^6 - x^8 - x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^22 + 3*x^20 + 3*x^19 + 6*x^18 + 6*x^17 + 9*x^16 + 9*x^15 + 12*x^14 + 12*x^13 + 15*x^12 + 15*x^11 + 15*x^10 + 15*x^9 + 13*x^8 + 12*x^7 + 10*x^6 + 9*x^5 + 7*x^4 + 6*x^3 + 4*x^2 + 3*x + 1)/(x^20 - x^16 - 2*x^14 - 3*x^12 - 5*x^10 - 3*x^8 - 2*x^6 - x^4 + 1).
a(n) = a(n-4) + 2*a(n-6) + 3*a(n-8) + 5*a(n-10) + 3*a(n-12) + 2*a(n-14) + a(n-16) - a(n-20) for n>20. - Colin Barker, Feb 06 2018
Previous Showing 31-34 of 34 results.