cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A132652 Sum of divisors of n, sigma(n) raised to power sigma(n).

Original entry on oeis.org

1, 27, 256, 823543, 46656, 8916100448256, 16777216, 437893890380859375, 302875106592253, 39346408075296537575424, 8916100448256, 33145523113253374862572728253364605812736, 11112006825558016, 1333735776850284124449081472843776
Offset: 1

Views

Author

Omar E. Pol, Aug 29 2007

Keywords

Examples

			a(4) = 823543 because sigma(4) = 1 + 2 + 4 = 7 and we can write 823543 = 7^7 or 823543 = 7*7*7*7*7*7*7.
		

Crossrefs

Cf. A000203 (sum of divisors: sigma function), A000312, A008973, A008974, A051674.

Programs

  • Mathematica
    Table[DivisorSigma[1,n]^DivisorSigma[1,n],{n,14}] (* Stefano Spezia, Sep 10 2022 *)

Formula

a(n) = sigma(n)^sigma(n).

A132653 Isolated prime I(n) raised to power I(n).

Original entry on oeis.org

4, 20880467999847912034355032910567, 10555134955777783414078330085995832946127396083370199442517, 3877924263464448622666648186154330754898344901344205917642325627886496385062863
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2007

Keywords

Comments

Isolated primes: A007510. See T. D. Noe's table of n^n in the entry A000312.

Examples

			a(1)=4 because I(1)=2 and we can write 4=2^2 or 4=2*2.
		

Crossrefs

Formula

a(n) = I(n)^I(n).

A132656 Motzkin number M(n) raised to power M(n).

Original entry on oeis.org

1, 1, 4, 256, 387420489, 5842587018385982521381124421, 1219211305094648479473193481872927834667576992593770717189298225284399541977208231315051
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2007

Keywords

Crossrefs

Motzkin numbers: A001006. Cf. A000312, A008973, A008974, A132639.
Previous Showing 11-13 of 13 results.