cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 14 2006

Keywords

Comments

Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - David Wasserman, Jan 25 2007

Examples

			2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)

Extensions

More terms from David Wasserman, Jan 25 2007

A126051 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 11.

Original entry on oeis.org

2, 3, 5, 7, 2, 6, 8, 9, 6, 1, 8, 6, 4, 2, 3, 3, 4, 5, 7, 1, 9, 8, 4, 5, 9, 10, 2, 3, 8, 5, 7, 6, 3, 3, 4, 6, 7, 1, 2, 3, 10, 1, 8, 8, 9, 2, 1, 4
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 11] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Formula

a(n) = A010880(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024
Previous Showing 11-12 of 12 results.