A274946 Boyd's Pisot-like sequence F(0,5,11).
0, 5, 11, 19, 30, 46, 70, 106, 160, 241, 363, 547, 824, 1241, 1869, 2815, 4240, 6386, 9618, 14486, 21818, 32861, 49493, 74543, 112272, 169097, 254683, 383587, 577734, 870146, 1310558, 1973878, 2972928, 4477633, 6743923, 10157263, 15298216, 23041189, 34703157, 52267663, 78722192
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305. See page 296.
Programs
-
Magma
f:=[0,5,11]; [n le 3 select f[n] else Floor(1/2+(Self(n-1)/Self(n-2))*(Self(n-1)+Self(n-3))-Self(n-2)): n in [1..50]]; // Bruno Berselli, Jul 26 2016
-
Maple
f:=proc(n) option remember; global f0,f1,f2; if n = 0 then f0 elif n=1 then f1 elif n=2 then f2 elif f(n-2)=0 then -f(n-4) else floor(1/2 + (f(n-1)/f(n-2))*(f(n-1)+f(n-3))-f(n-2)); fi; end; f0:=0; f1:=5; f2:=11; [seq(f(n),n=0..40)];
-
PARI
boyd(nmax, f1, f2, f3) = { f=vector(nmax); f[1]=f1; f[2]=f2; f[3]=f3; for(n=4, nmax, f[n] = floor(1/2 + (f[n-1]/f[n-2])*(f[n-1]+f[n-3])-f[n-2])); f } boyd(50, 0, 5, 11) \\ Colin Barker, Jul 26 2016
Formula
Conjectures from Colin Barker, Jul 26 2016: (Start)
a(n) = a(n-1)+a(n-3)+a(n-5)-a(n-6) for n>5.
G.f.: x*(5+6*x+8*x^2+6*x^3+5*x^4) / (1-x-x^3-x^5+x^6).
(End)
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016
Comments