cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A274946 Boyd's Pisot-like sequence F(0,5,11).

Original entry on oeis.org

0, 5, 11, 19, 30, 46, 70, 106, 160, 241, 363, 547, 824, 1241, 1869, 2815, 4240, 6386, 9618, 14486, 21818, 32861, 49493, 74543, 112272, 169097, 254683, 383587, 577734, 870146, 1310558, 1973878, 2972928, 4477633, 6743923, 10157263, 15298216, 23041189, 34703157, 52267663, 78722192
Offset: 0

Views

Author

N. J. A. Sloane, Jul 26 2016

Keywords

Comments

F(f0,f1,f2) is the sequence a(n) defined by a(0)=f0, a(1)=f1, a(2)=f2, and for n >= 3, a(n) = floor(1/2 + (a(n-1)/a(n-2))*(a(n-1)+a(n-3))-a(n-2)) unless a(n-2)=0 in which case a(n) = - a(n-4).

Crossrefs

Cf. A008776 (definition of the usual Pisot sequences), A010925.

Programs

  • Magma
    f:=[0,5,11]; [n le 3 select f[n] else Floor(1/2+(Self(n-1)/Self(n-2))*(Self(n-1)+Self(n-3))-Self(n-2)): n in [1..50]]; // Bruno Berselli, Jul 26 2016
    
  • Maple
    f:=proc(n) option remember; global f0,f1,f2;
    if n = 0 then f0
    elif n=1 then f1
    elif n=2 then f2
    elif f(n-2)=0 then -f(n-4)
    else floor(1/2 + (f(n-1)/f(n-2))*(f(n-1)+f(n-3))-f(n-2)); fi;
    end;
    f0:=0; f1:=5; f2:=11; [seq(f(n),n=0..40)];
  • PARI
    boyd(nmax, f1, f2, f3) = {
      f=vector(nmax); f[1]=f1; f[2]=f2; f[3]=f3;
      for(n=4, nmax, f[n] = floor(1/2 + (f[n-1]/f[n-2])*(f[n-1]+f[n-3])-f[n-2]));
      f
    }
    boyd(50, 0, 5, 11) \\ Colin Barker, Jul 26 2016

Formula

Conjectures from Colin Barker, Jul 26 2016: (Start)
a(n) = a(n-1)+a(n-3)+a(n-5)-a(n-6) for n>5.
G.f.: x*(5+6*x+8*x^2+6*x^3+5*x^4) / (1-x-x^3-x^5+x^6).
(End)
Note the warning in A010925 from Pab Ter (pabrlos(AT)yahoo.com), May 23 2004: [A010925] and other examples show that it is essential to reject conjectured generating functions for Pisot sequences until a proof or reference is provided. - N. J. A. Sloane, Jul 26 2016

A275904 Order of homogeneous linear recurrence satisfied by the Pisot sequence T(n, n^2-n+1).

Original entry on oeis.org

1, 2, 6, 36, 2048
Offset: 1

Views

Author

N. J. A. Sloane, Aug 11 2016

Keywords

Comments

Degree of denominator of minimal g.f. for T(n, n^2-n+1).
Conjecture: a(6) = 6852224. The conjectured generating function for T(6,31) is A(x)/(1+x - x*A(x)) where A(x) = 6 + x - x^2 - x^4 - x^22 - x^1130 - x^6852224 (and as usual there is a common factor of (1+x) in numerator and denominator). - David Boyd, Aug 12 2016.

Examples

			T(1,1) is the all-ones sequence, with g.f. 1/(1-x).
T(2,3) is 2,3,4,5,6,... with g.f. (2-x)/(1-2*x+x^2).
T(3,7) is A020746, with a linear recurrence of order 6.
T(4,13) is A010919, with a linear recurrence of order 36.
T(5,21) is A010925, with a linear recurrence of order 2048.
		

References

Crossrefs

Previous Showing 11-12 of 12 results.