cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-56 of 56 results.

A360427 Values of the argument at successive record minima of the function R defined as follows. For any integer x >= 1, let y > x be the smallest integer such that there exist integers x < c < d < y such that x^3 + y^3 = c^3 + d^3. Then R(x) = y/x.

Original entry on oeis.org

1, 2, 8, 9, 10, 17, 30, 42, 51, 135, 156, 285, 792, 1634, 3751, 4026, 6192, 14934, 15768, 16147, 45121, 58230, 61389, 79876, 167757, 177560, 213652, 525537, 917324, 1050787, 2237052, 3954983, 4157802
Offset: 1

Views

Author

Giedrius Alkauskas, Feb 07 2023

Keywords

Comments

For a given integer x, the identity x^3 + (12x)^3 = (9x)^3 + (10x)^3 holds, so R(x) <= 12.
A quadruple x = 2*N^4 - 4*N^3 + 9*N^2 - 8*N +10, y = 2*N^4 + 6*N^2 + N + 9, c = 2*N^4 - 3*N^3 + 12*N^2 - 5*N + 12, d = 2*N^4 - N^3 + 6*N^2 + N + 1 (for integer N) shows that the sequence is infinite.

Examples

			For x = 1, y = 12, 1^3 + 12^3 = 9^3 + 10^3, R(1) = 12. So, a(1) = 1.
For x = 2, y = 16, 2^3 + 16^3 = 9^3 + 15^3, R(2) = 8. So, a(2) = 2.
For x = 3, y = 36, 3^3 + 36^3 = 27^3 + 30^3, R(3) = 12. So, this does not provide a record minimum. The same negative outcome happens for x = 4, x = 5, x = 6, x = 7.
For x = 8, y = 53, 8^3 + 53^3 = 29^3 + 50^3, R(8) = 6.625. So, a(4) = 8.
For n = 8, a(8) = 42, since 42^3 + 69^3 = 56^3 + 61^3, and the ratio R(42) = 69/42 = 1.6428571... is an absolute minimum (eighth successive) for the function R(x) for 1 <= x <= 42.
		

Crossrefs

Programs

  • Python
    xm,ym,x,n = 0,1,0,1
    while True:
        x,y = x+1,x+4
        while y*xm < ym*x:
            c,d,s = x+1,y-1,x**3+y**3
            while cs:
                    d-=1
                else:
                    break
            if t==s:
                print("a({})={} x={} c={} d={} y={}".format(n,x,x,c,d,y))
                xm,ym,n = x,y,n+1
                break
            y+=1
    # Bert Dobbelaere, Mar 18 2023

Extensions

a(25)-a(33) from Bert Dobbelaere, Mar 18 2023

A268757 Unhappycab numbers: the smallest unhappy number that is the sum of two cubes of unhappy numbers in n different ways.

Original entry on oeis.org

16, 4104, 119824488, 74213505639000, 6123582409620312000
Offset: 1

Views

Author

Keywords

Comments

a(6) <= 802780294845778147551744 = 9851898^3+92902278^3 = 27391106^3+92139262^3 = 52144168^3+87109808^3 = 56241696^3+85493352^3 = 58805572^3+84316316^3 = 72408488^3+75075088^3.

Examples

			a(1) = 16 = 2^3+2^3;
a(2) = 4104 = 2^3+16^3 = 9^3+15^3;
a(3) = 119824488 = 11^3+493^3 = 90^3+492^3 = 346^3+428^3;
a(4) = 74213505639000 = 5895^3+41985^3 = 20392^3+40358^3 = 20880^3+40230^3 = 32790^3+33900^3;
a(5) = 6123582409620312000 = 193935^3+1828785^3 = 539195^3+1813765^3 = 1026460^3+1714760^3 = 1107120^3+1682940^3 = 1157590^3+1659770^3.
		

Crossrefs

Formula

a(n) >= A011541(n) for n > 0. It is conjectured that there is no equality.

A272889 Cubefree taxi-cab numbers that are not squarefree.

Original entry on oeis.org

40033, 443889, 1845649, 2048391, 4342914, 5799339, 26122131, 32973759, 41301953, 45882739, 53226297, 54269091, 65272753, 66763333, 70449093, 84637287, 86316741, 90527229, 91140435, 94100426, 104212017, 127396178, 128966383, 131126303, 131997229
Offset: 1

Views

Author

Altug Alkan, May 09 2016

Keywords

Comments

There are two versions of "taxicab numbers" that are A001235 and A011541. This sequence focuses on the version A001235.
This sequence lists cubefree taxi-cab numbers that are divisible by a square greater than 1.
Intersection of A001235 and A067259.
Subsequence of A272885.

Examples

			Taxi-cab number 40033 is a term because 40033 = 7^2*19*43.
Taxi-cab number 443889 is a term because 443889 = 3^2*31*37*43.
Taxi-cab number 1845649 is a term because 1845649 = 13^2*67*163.
		

Crossrefs

Programs

  • PARI
    T = thueinit(x^3+1, 1);
    isA001235(n) = my(v=thue(T, n)); sum(i=1, #v, v[i][1]>=0 && v[i][2]>=v[i][1])>1;
    isA067259(n) = n>3 && vecmax(factor(n)[, 2])==2;
    for(n=1, 1e10, if(isA001235(n) && isA067259(n), print1(n, ", ")));

A273354 Least number that is the sum of 2 positive cubes in exactly n ways and also the sum of 2 positive squares in exactly n ways.

Original entry on oeis.org

2, 4624776
Offset: 1

Views

Author

Altug Alkan, May 20 2016

Keywords

Comments

4624776 is the first term of A272701.
A011541(k) is not the sum of two nonzero squares for 2 <= k <= 6.
If it exists, what is the a(3)?

Examples

			a(1) = 2 because 2 = 1^3 + 1^3 = 1^2 + 1^2.
a(2) = 4624776 because 4624776 = 51^3 + 165^3 = 72^3 + 162^3 = 1026^2 + 1890^2 = 1350^2 + 1674^2.
		

Crossrefs

A372296 Taxicab numbers that are sandwiched between nonsquarefree numbers.

Original entry on oeis.org

20683, 216125, 327763, 593047, 684019, 842751, 1845649, 2691451, 4505949, 4744376, 5004125, 5772403, 6058747, 7640128, 8029000, 8216000, 8494577, 10702783, 10765603, 10821896, 11859211, 12533824, 13731319, 14916727, 16776487, 18406603, 18617625, 20616463, 22031576, 24480125, 25937576, 27529073
Offset: 1

Views

Author

Massimo Kofler, Apr 25 2024

Keywords

Examples

			20683 = 13 * 37 * 43 (between 20682 = 2 * 3^3 * 383 and 20684 = 2^2 * 5171).
216125 = 5^3 * 7 * 13 * 19 (between 216124 = 2^2 * 71 * 761 and 216126 = 2 * 3^2 * 12007).
327763 = 31 * 97 * 109 (between 327762 = 2 * 3^2 * 131 * 139 and 327764 = 2^2 * 67 * 1223).
		

Crossrefs

Programs

  • Mathematica
    Select[Import["https://oeis.org/A001235/b001235.txt", "Table"][[;; , 2]], # < 3*10^7 && Nor @@ SquareFreeQ /@ (# + {-1, 1}) &] (* Amiram Eldar, Apr 25 2024 *)

A384106 Numbers representable as the sum of 2 cubes in at least 2 ways generated by a parameterized formula involving (7+4*sqrt(3))^n and (7-4*sqrt(3))^n.

Original entry on oeis.org

1009736, 2714690888, 7334904115448, 19818905563705976, 53550675461437475048, 144693905277386048024168, 390962878508814502873889816, 1056203940519850679825934312168, 2853755704387709706549646191448888, 7710144396612746633517746345789261976
Offset: 1

Views

Author

Jamal Agbanwa, May 19 2025

Keywords

Comments

A rapidly growing sequence of integers, each equal to x(n)^3 + y(n)^3 = u(n)^3 + w(n)^3 for distinct positive integers x(n), y(n), u(n), w(n), generated from a parameterized expression. Values omit small classical examples (like 1729) and begin at much larger values and is therefore a parameterized subset of solutions to A001235.

Examples

			For n = 7, a(7) = x(n)^3 + y(n)^3 = ((-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^7 + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^7)/4 + 3)^3 + ((-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^7 + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^7)/4)^3 = 390962878508814502873889816.
		

Crossrefs

Subset of A001235.

Formula

a(n) = x(n)^3 + y(n)^3 = u(n)^3 + w(n)^3 where:
x(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 3,
y(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4,
u(n) = (-6 + (15 - 7*sqrt(3))*(7 - 4*sqrt(3))^n + (15 + 7*sqrt(3))*(7 + 4*sqrt(3))^n)/4, abd
w(n) = (-18 + (7 - 5*sqrt(3))*(7 - 4*sqrt(3))^n + (7 + 5*sqrt(3))*(7 + 4*sqrt(3))^n)/4 + 9.
Previous Showing 51-56 of 56 results.