cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 292 results. Next

A089880 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A069772.

Original entry on oeis.org

1, 1, 2, 3, 10, 22, 76, 217, 750, 2438, 8524, 29414, 104468, 371516, 1338936, 4847637, 17685270, 64823110, 238843660, 883634026, 3282152588, 12233141908, 45741634536, 171529836218, 644953425740, 2430973304732, 9183681736376
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

The number of orbits to which the corresponding automorphism(s) partitions the set of A000108(n) binary trees with n internal nodes.

Programs

Formula

a(n) = (A000108(n)+A089849(n))/2

A090827 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A089869/A089870.

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 91, 245, 659, 1786, 4846, 13182, 35962, 98418, 270121, 743533, 2052073, 5678238, 15750382, 43793198, 122042214
Offset: 0

Views

Author

Antti Karttunen, Dec 20 2003

Keywords

Comments

The number of orbits to which the corresponding automorphism(s) partitions the set of A000108(n) binary trees with n internal nodes.

A120707 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A120705/A120706.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 39, 72, 138, 286, 512
Offset: 0

Views

Author

Antti Karttunen, Jun 28 2006

Keywords

Comments

The number of orbits to which the corresponding automorphisms partition the set of A000108(n) binary trees of n internal nodes.

A120708 Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A120705/A120706.

Original entry on oeis.org

1, 1, 2, 3, 8, 24, 30, 60, 262, 262, 950, 2508, 4964
Offset: 0

Views

Author

Antti Karttunen, Jun 28 2006

Keywords

A120709 Least common multiple of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of permutation A120705/A120706.

Original entry on oeis.org

1, 1, 2, 6, 8, 120, 18480, 314954640, 29650259293200, 806144692105283180937910919057361600, 116647824244848662624579303522985859096483200, 3116996669196650347010384586809853826278378997194387292312487616560888473194736151916402811882584000
Offset: 0

Views

Author

Antti Karttunen, Jun 28 2006

Keywords

A126291 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A125985/A125986.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 8, 11, 16, 23, 22, 32, 44, 54
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

The number of orbits (equivalence classes) to which Vaille's automorphism partitions the set of A000108(n) Dyck paths of semilength n. Note the non-monotone drop from a(9) to a(10).

Crossrefs

A126294(2n) = 2*a(2n) for n>0.

A126292 Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A125985/A125986.

Original entry on oeis.org

1, 1, 2, 3, 12, 20, 60, 126, 446, 1438, 9732, 25832, 102990, 306732
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

The size of a largest orbit to which Vaille's automorphism partitions the set of A000108(n) Dyck paths of semilength n.

Crossrefs

For n>0, it seems that a(2n) = 2*A126296(2n).

A126293 Least common multiple of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of permutation A125985/A125986.

Original entry on oeis.org

1, 1, 2, 6, 12, 780, 27720, 47785500, 160430026680, 19702100764977190560, 1389717843080061549600, 689103351818617666941410400, 3910098498311750671529113672239956967773312909280
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Crossrefs

A126294 Number of cycles in range [A014137(n-1)..A014138(n-1)] of permutation A125987/A125988.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 16, 17, 32, 40, 44, 60, 88, 100
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

The number of orbits (equivalence classes) to which the square of Vaille's automorphism partitions the set of A000108(n) Dyck paths of semilength n.

Crossrefs

a(2n) = 2*A126291(2n) for n>0.

A126296 Maximum cycle size in range [A014137(n-1)..A014138(n-1)] of permutation A125987/A125988.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 30, 125, 223, 719, 4866, 12916, 51495, 153945
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

The size of a largest orbit to which the square of Vaille's automorphism partitions the set of A000108(n) Dyck paths of semilength n.

Crossrefs

For n>0, it seems that A126292(2n) = 2*a(2n).
Previous Showing 61-70 of 292 results. Next