cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A065089 Volume (multiplied by 3) of polyhedron formed by points (i,j,k) in Z^3 with i^2+j^2+k^2 = n^2.

Original entry on oeis.org

0, 4, 32, 272, 256, 1156, 2176, 3692, 2048, 8496, 9248, 15196, 17408, 22324, 29536, 39820, 16384, 56144, 67968, 79252, 73984, 111956, 121568, 143176, 139264, 184852, 178592, 238884, 236288, 285940, 318560, 358004, 131072, 435396, 449152
Offset: 0

Views

Author

Wouter Meeussen, Nov 10 2001

Keywords

Comments

For n=2^k, a(n)=4 n^3 because A016727(2^k) = SumOfSquaresRepresentations[3,(2^k)^2] contains only {0,0,2^k}.
This is why a(16) and a(32) are visibly so much smaller than their neighbors when you look at the graph. [Jonathan Vos Post, Apr 22 2011]

Examples

			a(2) = 32 because the volume of the polyhedron formed by all integer points at distance 2 from the origin, {{-2, 0, 0}, {0, -2, 0}, {0, 0, -2}, {0, 0, 2}, {0, 2, 0}, {2, 0, 0}}, is 32/3.
		

Crossrefs

Cf. A016727.

Programs

  • Mathematica
    forms[ z:{Integer, , _} ] := Union[ Flatten[ Permutations/@(Times[ z, # ]&/@Flatten[ Outer[ List, {1, -1}, {1, -1}, {1, -1} ], 2 ]), 1 ] ]; polyhedra=Flatten[ forms/@SumOfSquaresRepresentations[ 3, # ], 1 ]&/@(Range[ 1, 36 ]^2); HullVolume[ #, ConvexHull3D[ # ] ]&/@polyhedra;
Previous Showing 11-11 of 11 results.