A017507 a(n) = (11*n + 9)^11.
31381059609, 204800000000000, 25408476896404831, 717368321110468608, 9269035929372191597, 73786976294838206464, 422351360321044921875, 1903193578437064103936, 7153014030880804126753, 23316389970546096340992, 67766737102405685929319, 179216039403700000000000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
GAP
List([0..20], n-> (11*n+9)^11); # G. C. Greubel, Oct 29 2019
-
Magma
[(11*n+9)^11: n in [0..20]]; // G. C. Greubel, Oct 29 2019
-
Maple
seq((11*n+9)^11, n=0..20); # G. C. Greubel, Oct 29 2019
-
Mathematica
(11*Range[20] -2)^11 (* G. C. Greubel, Oct 29 2019 *)
-
PARI
vector(21, n, (11*n-2)^11) \\ G. C. Greubel, Oct 29 2019
-
Sage
[(11*n+9)^11 for n in (0..20)] # G. C. Greubel, Oct 29 2019
Formula
From G. C. Greubel, Oct 29 2019: (Start)
G.f.: (31381059609 + 204423427284692*x + 22952948046339025*x^2 + 425976494520496656*x^3 +2292535084833793602*x^4 +4416340564654562280*x^5 +3258008937067466010*x^6 +892801175894641200*x^7 +78407266240574469*x^8 +1500175218575748*x^9 +1792160369461*x^10 +2048*x^11)/(1-x)^12
E.g.f.: (31381059609 + 204768618940391*x + 12499454138732220*x^2 + 106959543173365751*x^3 +272966430737075240*x^4 +286353492156140222*x^5 + 145413296465578218*x^6 +38972231675790897*x^7 +5719308232166595*x^8 + 455590863116565*x^9 +18259946919104*x^10 +285311670611*x^11)*exp(x). (End)