A063885 z(sigma(n)) = 2n, where z(n) = A048146.
24, 1536, 1631, 47360, 82458
Offset: 1
Programs
-
PARI
u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d)); z(n) = sigma(n)-u(n); for(n=1,10^7, if(z(sigma(n))==2*n,print1(n, ", ")))
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d)); z(n) = sigma(n)-u(n); for(n=1,10^7, if(z(sigma(n))==2*n,print1(n, ", ")))
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1,n] - usigma[n]; Select[Range[12000], nusigma[usigma[#]] == 2# &] (* Amiram Eldar, Apr 10 2019 *)
u(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d)); z(n)=sigma(n)-u(n) ; for(n=1,10^8, if(z(u(n))==2*n,print1(n, ", ")))
Calculating sum-of-divisors ( ... sum-of-divisors ( sum-of-divisors ( 7 ) ) ... ) the iterates are 7, 8, 15, 24, ... . The initial, consecutive, pairwise, coprime iterates are 7, 8, 15, and there are 3 of these, so a(7) = 3. Here sigma ( 7 ) = 8, sigma ( sigma ( 7 ) ) = sigma ( 8 ) = 15, etc.
a(n)=my(t,s);if(n==1,1,while(1,s++;t=sigma(n);if(gcd(t,n)==1,n=t,return(s)))) \\ Charles R Greathouse IV, Feb 06 2012
Comments