A098861
a(n) = row number in Stolarsky array that contains n. If the first occurrence of a number in the sequence is deleted, the sequence remains unchanged.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 2, 0, 3, 1, 2, 4, 0, 5, 3, 1, 6, 2, 4, 7, 0, 8, 5, 3, 9, 1, 10, 6, 2, 11, 4, 7, 12, 0, 13, 8, 5, 14, 3, 9, 15, 1, 16, 10, 6, 17, 2, 18, 11, 4, 19, 7, 12, 20, 0
Offset: 1
- D. R. Morrison, A Stolarsky Array of Wythoff Pairs, A Collection of Manuscripts Related to the Fibonacci Sequence, edited by V. E. Hoggatt Jr., M. Bicknell-Johnson, published by The Fibonacci Association, (1980) pp. 134-136.
A199087
The smallest row index of a row in A160271 (the monotonic justified array of generalized Fibonacci sequences) which contains n.
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 2, 4, 1, 3, 2, 4, 5, 1, 6, 3, 2, 8, 4, 9, 5, 1, 12, 6, 3, 7, 2, 16, 8, 4, 10, 9, 5, 11, 1, 13, 12, 6, 14, 3, 7, 15, 2, 18, 16, 8, 19, 4, 10, 20, 9, 23, 5, 11, 24, 1, 13, 25, 12, 29, 6, 14, 30, 3, 17, 7, 15, 35, 2, 18, 36, 16, 21, 8, 19, 42
Offset: 0
A345252
2-1-Fibonacci cohort array, a rectangular array T(n,k) read by downward antidiagonals.
Original entry on oeis.org
1, 2, 3, 4, 6, 5, 7, 11, 10, 8, 12, 19, 18, 16, 9, 20, 32, 31, 29, 17, 13, 33, 53, 52, 50, 30, 26, 14, 54, 87, 86, 84, 51, 47, 27, 15, 88, 142, 141, 139, 85, 81, 48, 28, 21, 143, 231, 230, 228, 140, 136, 82, 49, 42, 22, 232, 375, 374, 372, 229, 225, 137, 83, 76
Offset: 1
Northwest corner of {T(n,k)}:
k=1 k=2 k=3 k=4 k=5 k=6 ...
n=0: 1, 2, 4, 7, 12, 20, ...
n=1: 3, 6, 11, 19, 32, 53, ...
n=2: 5, 10, 18, 31, 52, 86, ...
n=3: 8, 16, 29, 50, 84, 139, ...
n=4: 9, 17, 30, 51, 85, 140, ...
...
Northwest corner of {T(n,k)} in maximal Fibonacci expansion (see link):
k=1 k=2 k=3 ...
n=0: F(1), F(1)+F(2), F(1)+F(2)+F(3), ...
n=1: F(1)+F(3), F(1)+F(3)+F(4), F(1)+F(3)+F(4)+F(5), ...
n=2: F(1)+F(2)+F(4), F(1)+F(2)+F(4)+F(5), F(1)+F(2)+F(4)+F(5)+F(6), ...
...
Northwest corner of {T(n,k)} as "Fibonacci gaps," or differences between successive indices in maximal Fibonacci expansion above, (see link):
k=1 k=2 k=3 k=4 k=5 k=6 ...
n=0: *, 1, 11, 111, 1111, 11111, ...
n=1: 2, 21, 211, 2111, 21111, 211111, ...
n=2: 12, 121, 1211, 12111, 121111, 1211111, ...
n=3: 22, 221, 2211, 22111, 221111, 2211111, ...
n=4: 122, 1221, 12211, 122111, 1221111, 12211111, ...
...
Cf.
A000027,
A000045,
A000071,
A000201,
A001950,
A035513,
A059893,
A083047,
A130233,
A132817,
A191436,
A194030,
A232560,
A345253,
A345254.
-
(* Define A000045 *)
F[n_] := Fibonacci[n]
(* Defined A130233 *)
Finv[n_] := Floor[Log[GoldenRatio, Sqrt[5]n + 1]]
(* Simplified Formula *)
MatrixForm[Table[n + F[Finv[n] + k + 2] - F[Finv[n] + 2], {n, 0, 4}, {k, 1, 6}]]
(* Branching Formula *)
MatrixForm[Table[NestList[Function[# + F[Finv[#]]], n + F[Finv[n] + 1], 5], {n, 0, 4}]]
A345254
Dispersion of A004754, a rectangular array T(n,k) read by downward antidiagonals.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 7, 16, 17, 18, 11, 12, 32, 33, 34, 19, 20, 13, 64, 65, 66, 35, 36, 21, 14, 128, 129, 130, 67, 68, 37, 22, 15, 256, 257, 258, 131, 132, 69, 38, 23, 24, 512, 513, 514, 259, 260, 133, 70, 39, 40, 25, 1024, 1025, 1026, 515, 516, 261, 134
Offset: 1
Northwest corner of {T(n,k)}:
k=1 k=2 k=3 k=4 k=5 k=6
n=0: 1, 2, 4, 8, 16, 32, ...
n=1: 3, 5, 9, 17, 33, 65, ...
n=2: 6, 10, 18, 34, 66, 130, ...
n=3: 7, 11, 19, 35, 67, 131, ...
n=4: 12, 20, 36, 68, 132, 260, ...
...
Northwest corner of {T(n,k)} in base-2:
k=1 k=2 k=3 k=4 k=5 k=6
n=0: 1, 10, 100, 1000, 10000, 100000, ...
n=1: 11, 101, 1001, 10001, 100001, 1000001, ...
n=2: 110, 1010, 10010, 100010, 1000010, 10000010, ...
n=3: 111, 1011, 10011, 100010, 1000011, 10000011, ...
n=4: 1100,10100, 100100, 1000100, 10000100, 100000100, ...
...
Cf.
A000027,
A004754,
A053645,
A005408,
A005843,
A019586,
A054582,
A059893,
A065120,
A139706,
A139708,
A191448,
A345252,
A345253.
-
(*Simplified Formula*)
MatrixForm[Prepend[Table[n + 2^(Floor[Log[2, n]] + k), {n, 1, 4}, {k, 1, 6}], Table[2^(k - 1), {k, 1, 6}]]]
(*Branching Formula*)
MatrixForm[Prepend[Table[NestList[Function[# + 2^(Floor[Log[2, #]])], n + 2^(Floor[Log[2, n]] + 1), 5], {n, 1, 4}], NestList[Function[# + 2^(Floor[Log[2, #]])], 1, 5]]]
-
T(n, k) = if (n==0, 2^(k-1), n + 2^(log(n)\log(2) + k));
matrix(7, 7, n, k, n--; T(n, k)) \\ Michel Marcus, Jul 30 2021
A019594
Conway's "para-budding" sequence.
Original entry on oeis.org
1, 3, 2, 5, 8, 5, 9, 5, 10, 15, 9, 15, 21, 13, 20, 11, 19, 27, 16, 25, 13, 23, 33, 19, 30, 41, 25, 37, 20, 33, 46, 27, 41, 55, 34, 49, 27, 43, 59, 35, 52, 27, 45, 63, 36, 55, 74, 45, 65, 35, 56, 77, 45, 67, 34, 57, 80, 45, 69, 93, 56, 81, 43
Offset: 0
- J. H. Conway, personal communication.
Comments