cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A020287 Strong pseudoprimes to base 61.

Original entry on oeis.org

15, 217, 341, 1261, 2701, 3661, 6541, 6697, 7613, 13213, 16213, 22177, 23653, 23959, 31417, 50117, 61777, 63139, 67721, 76301, 77421, 79381, 80041, 102341, 113491, 115231, 145993, 160147, 163073, 164737, 170941, 178709, 197209, 210817, 249631
Offset: 1

Views

Author

Keywords

Comments

The smallest number which is a strong pseudoprime to the bases 2 (A001262), 7 (A020233) and also 61 (here) is 4759123141 [Jaeschke]. - R. J. Mathar, Apr 05 2011

A048684 Multiplicity of the maximum squarefree kernel function applied to the binomial coefficients C(n,k).

Original entry on oeis.org

2, 1, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Keywords

Examples

			For n = 8, 9 or 10 the spectra of squarefree maximal divisors are {1,2,14,14,70,14,14,2,1}, {1,3,6,42,42,42,42,6,3,1} and {1,10,15,30,210,42,30,15,10,1}, respectively. The maxima (70,42 and 210) occur 1, 4 or 4 times. So a(8) = 1, a(9) = 4 and a(10) = 2.
		

Crossrefs

Programs

  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[;;, 1]]; a[n_] := Module[{r = rad /@ Table[Binomial[n, k], {k, 0, n}]}, Count[r, Max[r]]]; Array[a, 100] (* Amiram Eldar, Sep 17 2024 *)
  • PARI
    rad(n) = vecprod(factor(n)[, 1]);
    a(n) = {my(r = vector(n+1, k, rad(binomial(n,k-1))), rm = vecmax(r)); #select(x -> x==rm, r);} \\ Amiram Eldar, Sep 17 2024

A329759 Odd composite numbers k for which the number of witnesses for strong pseudoprimality of k equals phi(k)/4, where phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 91, 703, 1891, 8911, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 5481451, 6186403, 6969511
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2019

Keywords

Comments

Odd numbers k such that A071294((k-1)/2) = A000010(k)/4.
For each odd composite number m > 9 the number of witnesses <= phi(m)/4. For numbers in this sequence the ratio reaches the maximal possible value 1/4.
The semiprime terms of this sequence are of the form (2*m+1)*(4*m+1) where 2*m+1 and 4*m+1 are primes and m is odd.

Examples

			15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005, Theorem 3.5.4., p. 136.

Crossrefs

Programs

  • Mathematica
    o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2];
    a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))];
    aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]

A298757 Numbers k with record value of the least strong pseudoprime to base k (A298756).

Original entry on oeis.org

2, 1320, 4712, 5628, 7252, 7852, 14787, 17340, 61380, 78750, 254923, 486605, 1804842, 4095086, 12772344, 42162995
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2018

Keywords

Comments

The record strong pseudoprimes are 2047, 4097, 4711, 5627, 7251, 7851, 9409, 10261, 11359, 13747, 18299, 25761, 32761, 38323, 40501, 97921, ...

Crossrefs

Programs

  • Mathematica
    sppQ[n_?EvenQ, ] := False; sppQ[n?PrimeQ, ] := False; sppQ[n, b_] := Module[{ans=False},s = IntegerExponent[n-1, 2]; d = (n-1)/2^s; If[ PowerMod[b, d, n] == 1, ans=True, Do[If[PowerMod[b, d*2^r, n] == n-1, ans=True], {r, 0, s-1}]];ans]; smallestSPP[b_] := Module[ {k=3}, While[ !sppQ[k,b],k+=2];k ]; sm=0;a={};Do[s=smallestSPP[b];If[s>sm,sm=s;AppendTo[a,b]], {b,2,10^4}];a (* after Jean-François Alcover at A020229 *)
  • PARI
    lista(nn) = {my(m=0); for (n=2, nn, my(r=a298756(n)); if (r>m, m =r; print1(n, ", ")););} \\ Michel Marcus, Jan 31 2022; using pari code in A298756

Extensions

a(9)-a(16) from Jonathan Pappas, Jan 31 2022
Previous Showing 11-14 of 14 results.