cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A267301 Earliest positive increasing sequence having no 5-term subsequence with constant second differences.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 17, 20, 21, 23, 25, 31, 32, 37, 46, 47, 53, 56, 61, 63, 64, 67, 70, 72, 76, 87, 90, 93, 104, 112, 116, 120, 135, 138, 146, 153, 164, 177, 179, 180, 197, 201, 221, 224, 276, 277, 279, 282, 283, 285, 287, 295, 305, 317, 320, 327, 340, 354, 361, 364, 377, 380, 385, 391, 403, 415, 424, 430, 443
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267300 (nonnegative variant: starting with 0).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267301(n, show=0, L=5, o=2, v=[1], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

A248625 Lexicographically earliest sequence of nonnegative integers such that no triple (a(n),a(n+d),a(n+2d)) is in arithmetic progression, for any d>0, n>=0.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 3, 3, 0, 0, 1, 0, 0, 1, 1, 3, 3, 1, 3, 3, 4, 4, 7, 4, 4, 8, 0, 0, 1, 0, 0, 1, 1, 3, 3, 0, 0, 1, 0, 0, 1, 1, 3, 3, 1, 3, 3, 4, 4, 7, 4, 4, 8, 8, 3, 3, 4, 4, 9, 4, 4, 9, 1, 9, 12, 10, 9, 7, 10, 12, 9, 11, 9, 9, 11, 9, 10, 13, 19, 12, 0, 0, 1, 0, 0, 1, 1, 3, 3
Offset: 0

Views

Author

M. F. Hasler, Oct 10 2014

Keywords

Comments

The sequence is constructed in the greedy way, appending at each step the least nonnegative integer such that no subsequence of equidistant terms contains an AP.
Every nonnegative integer seems to appear in this sequence - see A248627 for the corresponding indices.
Sequence A229037 is the analog for positive integers (and indices).

Examples

			Start with a(0)=a(1)=0, smallest possible choice and trivially satisfying the constraint since no 3-term subsequence is possible.
Then one must take a(2)=1 since otherwise [0,0,0] would be an AP.
Then one can take again a(3)=a(4)=0, and a(5)=1.
Now appending 0 would yield the AP (0,0,0) by extracting terms with indices 0,3,6; therefore a(6)=1.
Now a(7) cannot be 0 not 1 nor 2 since else a(3)=0, a(5)=1, a(7)=2 would be an AP, therefore a(7)=3 is the least possible choice.
		

Crossrefs

Programs

  • PARI
    [DD(v)=vecextract(v,"^1")-vecextract(v,"^-1"), hasAP(a,m=3)=u=vector(m,i,1);v=vector(m,i,i-1);for(i=1,#a-m+1,for(s=1,(#a-i)\(m-1),#Set(DD(t=vecextract(a,(i)*u+s*v)))==1&&return
    ([i,s,t])))]; a=[]; for(n=1,90,a=concat(a,0);while(hasAP(a),a[#a]++);print1(a[#a]","));a

Formula

a(n) = A229037(n+1)+1.

A267302 Earliest nonnegative increasing sequence having no 6-term subsequence with constant second differences.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 17, 19, 20, 21, 24, 25, 27, 34, 35, 38, 40, 42, 45, 46, 48, 53, 54, 55, 63, 67, 73, 74, 80, 82, 83, 84, 86, 87, 89, 90, 92, 94, 102, 107, 108, 110, 117, 128, 133, 136, 139, 143, 144, 149, 150, 151, 152
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267303 (positive variant: starting with 1).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A267300 and A267301 for sequences avoiding 5-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267302(n, show=0, L=6, o=2, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

A267303 Earliest positive increasing sequence having no 6-term subsequence with constant second differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 18, 20, 21, 22, 25, 26, 28, 35, 36, 39, 41, 43, 46, 47, 49, 54, 55, 56, 64, 68, 74, 75, 81, 83, 84, 85, 87, 88, 90, 91, 93, 95, 103, 108, 109, 111, 118, 129, 134, 137, 140, 144, 145, 150, 151, 152, 153
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267302 (nonnegative variant: starting with 0).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A267300 and A267301 for sequences avoiding 5-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267303(n, show=0, L=6, o=2, v=[1], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

A267304 Earliest nonnegative increasing sequence having no 7-term subsequence with constant second differences.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 24, 26, 28, 29, 31, 33, 35, 38, 40, 41, 43, 49, 50, 52, 53, 58, 59, 62, 63, 64, 69, 70, 72, 73, 77, 81, 82
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267305 (positive variant: starting with 1).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A267300 and A267301 for sequences avoiding 5-term subsequences with constant second differences.
Cf. A267302 and A267303 for sequences avoiding 6-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267304(n, show=0, L=7, o=2, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

A267305 Earliest positive increasing sequence having no 7-term subsequence with constant second differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 25, 27, 29, 30, 32, 34, 36, 39, 41, 42, 44, 50, 51, 53, 54, 59, 60, 63, 64, 65, 70, 71, 73, 74, 78, 82, 83
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267304 (nonnegative variant: starting with 0).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A267300 and A267301 for sequences avoiding 5-term subsequences with constant second differences.
Cf. A267302 and A267303 for sequences avoiding 6-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267305(n, show=0, L=7, o=2, v=[1], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

A267306 Earliest nonnegative increasing sequence having no 6-term subsequence with constant third differences.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 47, 79, 93, 94, 96, 97, 98, 99, 100, 102, 103, 105, 110, 116, 122, 128, 130, 140, 148, 266, 281, 296, 303, 304, 306, 308, 311, 313, 318, 324, 326, 327, 328, 330, 331, 332, 337
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267307 (positive variant: starting with 1).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A267300 and A267301 for sequences avoiding 5-term subsequences with constant second differences.
Cf. A267302 and A267303 for sequences avoiding 6-term subsequences with constant second differences.
Cf. A267304 and A267305 for sequences avoiding 7-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267306(n, show=0, L=6, o=3, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

Extensions

More terms from Jinyuan Wang, Jan 01 2021

A267307 Earliest positive increasing sequence having no 6-term subsequence with constant third differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 29, 30, 32, 33, 34, 35, 36, 38, 39, 41, 48, 80, 94, 95, 97, 98, 99, 100, 101, 103, 104, 106, 111, 117, 123, 129, 131, 141, 149, 267, 282, 297, 304, 305, 307, 309, 312, 314, 319, 325, 327, 328, 329, 331, 332, 333, 338
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2016

Keywords

Crossrefs

Cf. A267306 (nonnegative variant: starting with 0).
No 3-term AP: A005836 (>=0), A003278 (>0);
no 4-term AP: A240075 (>=0), A240555 (>0);
no 5-term AP: A020654 (>=0), A020655 (>0);
no 6-term AP: A020656 (>=0), A005838 (>0);
no 7-term AP: A020657 (>=0), A020658 (>0);
no 8-term AP: A020659 (>=0), A020660 (>0);
no 9-term AP: A020661 (>=0), A020662 (>0);
no 10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 and A240555 for sequences avoiding 4-term subsequences with constant second differences.
Cf. A267300 and A267301 for sequences avoiding 5-term subsequences with constant second differences.
Cf. A267302 and A267303 for sequences avoiding 6-term subsequences with constant second differences.
Cf. A267304 and A267305 for sequences avoiding 7-term subsequences with constant second differences.
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • PARI
    A267307(n, show=0, L=6, o=3, v=[1], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

Extensions

More terms from Jinyuan Wang, Jan 08 2021
Previous Showing 21-28 of 28 results.