A370069 Lexicographically earliest sequence of distinct integers such that the concatenated binary expansions of the terms is A010051.
0, 1, 2, 40, 162, 8, 32, 160, 34, 544, 130, 520, 2568, 8320, 552, 663552, 2178, 512, 10272, 34848, 2560, 665600, 2048, 35360, 163872, 2080, 10274, 8396800, 9052160, 33280, 2592, 128, 33288, 133128, 131584, 10242, 33312, 2056, 165888, 526464, 2230272, 655360, 2129952, 8352, 32800, 534560, 141312, 2050, 139394, 32776
Offset: 1
Examples
terms 0, 1, 2, 40, 162, 8, 32 binary {0}, {1}, {1,0}, {1,0,1,0,0,0}, {1,0,1,0,0,0,1,0}, {1,0,0,0}, {1,0,0,0,0,0} A010051 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
n=49; lst={0};p=2;c=Boole[PrimeQ@Range[n^2]]; Do[k=1;While[MemberQ[lst,ne=FromDigits[c[[p;;(pn=NextPrime[p,k])-1]],2]],k++]; AppendTo[lst,ne];p=pn,{i,n}];lst
-
Python
from sympy import nextprime from itertools import islice def agen(): # generator of terms yield 0 p, nextp, aset = 2, 3, {0} while True: an = 0 while an in aset: an = (an<<(nextp-p)) + (1<<(nextp-p-1)) p, nextp = nextp, nextprime(nextp) yield an aset.add(an) print(list(islice(agen(), 50))) # Michael S. Branicky, Feb 08 2024
Comments