cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 62 results. Next

A024466 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers), t = A023533.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 3, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 988, 1598, 2586, 4184, 6770, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17712, 28658, 46370, 75028, 121398, 196426
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Fibonacci(k)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 25 2022
    
  • Mathematica
    A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1,3]] +2,3]!= n,0,1];
    A024466[n_]:= A024466[n]= Sum[Fibonacci[j]*A023533[n-j+1], {j, Floor[(n+1)/2]}];
    Table[A024466[n], {n, 100}] (* G. C. Greubel, Jul 25 2022 *)
  • SageMath
    @CachedFunction
    def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3)!= n) else 1
    def A024466(n): return sum(fibonacci(j)*A023533(n-j+1) for j in (1..((n+1)//2)))
    [A024466(n) for n in (1..100)] # G. C. Greubel, Jul 25 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} Fibonacci(k)*A023533(n+1-k).

A024476 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (Lucas numbers), t = A023533.

Original entry on oeis.org

1, 0, 0, 1, 3, 4, 7, 0, 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2208, 3574, 5782, 9356, 15138, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39604, 64082, 103686, 167768
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Lucas(k)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Aug 01 2022
    
  • Mathematica
    A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1,3]]+2, 3]!= n,0,1];
    A024476[n_]:= A024476[n]= Sum[LucasL[j]*A023533[n-j+1], {j, Floor[(n+1)/2]}];
    Table[A024476[n], {n, 100}] (* G. C. Greubel, Aug 01 2022 *)
  • SageMath
    @CachedFunction
    def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3)!= n) else 1
    def A024476(n): return sum(lucas_number2(j,1,-1)*A023533(n-j+1) for j in (1..((n+1)//2)))
    [A024476(n) for n in (1..100)] # G. C. Greubel, Aug 01 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} A000032(k) * A023533(n-k+1).

A024601 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = (odd natural numbers), t = A023533.

Original entry on oeis.org

1, 0, 0, 1, 3, 5, 7, 0, 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 32, 36, 40, 44, 48, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[(2*k-1)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Aug 01 2022
    
  • Mathematica
    A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1,3]]+2, 3]!= n, 0,1];
    A024601[n_]:= A024601[n]= Sum[(2*j-1)*A023533[n-j+1], {j, Floor[(n+1)/2]}];
    Table[A024601[n], {n, 100}] (* G. C. Greubel, Aug 01 2022 *)
  • SageMath
    @CachedFunction
    def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3)!= n) else 1
    def A024601(n): return sum((2*j-1)*A023533(n-j+1) for j in (1..((n+1)//2)))
    [A024601(n) for n in (1..100)] # G. C. Greubel, Aug 01 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} A005408(k-1) * A023533(n-k+1).

A024687 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A000201 (lower Wythoff sequence), t = A023533.

Original entry on oeis.org

1, 0, 0, 1, 3, 4, 6, 0, 0, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 26, 30, 33, 36, 40, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 36, 40, 42, 46, 50, 52, 56, 58, 62, 66, 68, 72, 76, 78, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    [(&+[Floor(k*(1+Sqrt(5))/2)*A023533(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Aug 01 2022
    
  • Mathematica
    A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1,3]] +2, 3]!= n, 0,1];
    A024687[n_]:= A024687[n]= Sum[Floor[j*GoldenRatio]*A023533[n-j+1], {j, Floor[(n+ 1)/2]}];
    Table[A024687[n], {n, 100}] (* G. C. Greubel, Aug 01 2022 *)
  • SageMath
    @CachedFunction
    def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3)!= n) else 1
    def A024687(n): return sum(floor(j*golden_ratio)*A023533(n-j+1) for j in (1..((n+1)//2)))
    [A024687(n) for n in (1..100)] # G. C. Greubel, Aug 01 2022

Formula

a(n) = Sum_{k=1..floor((n+1)/2)} A000201(k) * A023533(n-k+1).

A024690 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A001950 (upper Wythoff sequence), t = A023533.

Original entry on oeis.org

2, 0, 0, 2, 5, 7, 10, 0, 0, 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 43, 49, 54, 59, 65, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 59, 65, 69, 75, 81, 85, 91, 95, 101, 107, 111, 117, 123, 127, 39, 41, 44, 47, 49, 52
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A024694 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n+1-k), where k = floor((n+1)/2), s = A023533, t = A000040.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 24, 30, 36, 46, 50, 60, 70, 74, 84, 94, 102, 108, 149, 161, 171, 187, 197, 209, 229, 243, 253, 271, 281, 289, 313, 323, 339, 363, 381, 391, 403, 421, 502, 530, 552, 568, 592, 618, 630, 650, 674, 696, 712, 746, 768, 794, 802, 830, 846, 872, 906, 922
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    A024694:= func< n | (&+[A023533(k)*NthPrime(n+1-k): k in [1..Floor((n+1)/2)]]) >;
    [A024694(n): n in [1..130]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3] != n, 0, 1];
    A024694[n_]:= A024694[n]= Sum[Prime[n-j+1]*A023533[j], {j, Floor[(n+1)/2]}];
    Table[A024694[n], {n, 130}] (* G. C. Greubel, Sep 07 2022 *)
  • SageMath
    @CachedFunction
    def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1
    def A024694(n): return sum(nth_prime(n-k+1)*A023533(k) for k in (1..((n+1)//2)))
    [A024694(n) for n in (1..130)] # G. C. Greubel, Sep 07 2022

A024865 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000027, t = A023533.

Original entry on oeis.org

0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

A024889 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A023531, t = A023533.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{j=2..floor(n/2)} A023531(k)*A023533(n-k+1).

A025086 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000045, t = A023533.

Original entry on oeis.org

0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 988, 1598, 2586, 4184, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17712, 28658, 46370, 75028, 121398, 196426, 317824, 514250
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    A025086:= func< n | (&+[Fibonacci(k)*A023533(n+1-k): k in [1..Floor(n/2)]]) >;
    [A025086(n): n in [2..100]]; // G. C. Greubel, Sep 08 2022
    
  • Mathematica
    b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}];
    A025086[n_]:= A025086[n]= Sum[Fibonacci[n-j+1]*b[j], {j, Floor[(n+3)/2], n}];
    Table[A025086[n], {n,2,100}] (* G. C. Greubel, Sep 08 2022 *)
  • SageMath
    @CachedFunction
    def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..10))
    @CachedFunction
    def A025086(n): return sum(fibonacci(n-j+1)*b(j) for j in (((n+3)//2)..n))
    [A025086(n) for n in (2..100)] # G. C. Greubel, Sep 08 2022

Extensions

Offset corrected by G. C. Greubel, Sep 08 2022

A025096 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A000032, t = A023533.

Original entry on oeis.org

0, 0, 1, 3, 4, 0, 0, 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2208, 3574, 5782, 9356, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39604, 64082, 103686, 167768, 271454
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    A025096:= func< n | (&+[Lucas(k)*A023533(n+1-k): k in [1..Floor(n/2)]]) >;
    [A025096(n): n in [2..130]]; // G. C. Greubel, Sep 08 2022
    
  • Mathematica
    A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1,3]] +2,3]!= n,0,1];
    A025096[n_]:= A025096[n]= Sum[LucasL[j]*A023533[n-j+1], {j, Floor[n/2]}];
    Table[A025096[n], {n,2,100}] (* G. C. Greubel, Sep 08 2022 *)
  • SageMath
    @CachedFunction
    def A023533(n): return 0 if (binomial( floor( (6*n-1)^(1/3) ) +2, 3) != n) else 1
    def A025096(n): return sum(lucas_number2(k,1,-1)*A023533(n-k+1) for k in (1..(n//2)))
    [A025096(n) for n in (2..100)] # G. C. Greubel, Sep 08 2022

Extensions

Offset corrected by G. C. Greubel, Sep 08 2022
Previous Showing 21-30 of 62 results. Next