cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A033814 Convolution of positive integers n with Lucas numbers L(k)(A000032) for k >= 4.

Original entry on oeis.org

7, 25, 61, 126, 238, 426, 737, 1247, 2079, 3432, 5628, 9188, 14955, 24293, 39409, 63874, 103466, 167534, 271205, 438955, 710387, 1149580, 1860216, 3010056, 4870543, 7880881, 12751717, 20632902, 33384934, 54018162, 87403433, 141421943, 228825735, 370248048
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> Lucas(1, -1, n+7)[2] -11*n-29 ) # G. C. Greubel, Jun 01 2019
    
  • Magma
    [Lucas(n+7) - 11*n - 29 : n in [1..40]]; // G. C. Greubel, Jun 01 2019
    
  • Mathematica
    Table[LucasL[n+7] -11*n-29, {n,1,40}] (* G. C. Greubel, Jun 01 2019 *)
  • PARI
    vector(40, n, fibonacci(n+8) + fibonacci(n+6) -11*n-29) \\ G. C. Greubel, Jun 01 2019
    
  • Python
    from sympy import lucas
    def a(n): return lucas(n+7) - 11*n - 29
    print([a(n) for n in range(1, 35)]) # Michael S. Branicky, Jul 25 2021
  • Sage
    [lucas_number2(n+7,1,-1) -11*n-29 for n in (1..40)] # G. C. Greubel, Jun 01 2019
    

Formula

a(n) = L(7)*(F(n+1)-1) + L(6)*F(n) - L(5)*n, F(n): Fibonacci (A000045) and L(n): Lucas (A000032).
G.f.: x*(7+4*x)/((1-x-x^2)*(1-x)^2).
a(n) = A000032(n+7) - 11*n - 29. - G. C. Greubel, Jun 01 2019

A033817 Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -4.

Original entry on oeis.org

7, 10, 16, 21, 28, 36, 47, 62, 84, 117, 168, 248, 375, 578, 904, 1429, 2276, 3644, 5855, 9430, 15212, 24565, 39696, 64176, 103783, 167866, 271552, 439317, 710764, 1149972, 1860623, 3010478, 4870980, 7881333, 12752184, 20633384, 33385431, 54018674, 87403960, 141422485
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> Lucas(1, -1, n-1)[2] +4*n+1 ) # G. C. Greubel, Jun 01 2019
  • Magma
    [Lucas(n-1) + 4*n + 1 : n in [1..40]]; // G. C. Greubel, Jun 01 2019
    
  • Mathematica
    Table[LucasL[n-1] +4*n+1, {n,1,40}] (* G. C. Greubel, Jun 01 2019 *)
  • PARI
    vector(40, n, fibonacci(n) + fibonacci(n-2) +4*n+1) \\ G. C. Greubel, Jun 01 2019
    
  • Sage
    [lucas_number2(n-1,1,-1) +4*n+1 for n in (1..40)] # G. C. Greubel, Jun 01 2019
    

Formula

a(n) = L(-1)*(F(n+1)-1) + L(-2)*F(n) - L(-3)*n, F(n): Fibonacci (A000045), L(n): Lucas (A000032) with L(-n)=(-1)^n*L(n)
G.f.: x*(7-11*x)/((1-x-x^2)*(1-x)^2).
a(n) = Lucas(n-1) + 4*n + 1. - G. C. Greubel, Jun 01 2019

Extensions

Terms a(31) onward added by G. C. Greubel, Jun 01 2019
Previous Showing 11-12 of 12 results.