cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A384960 a(n) = smallest sphenic number k such that A010846(k) = n.

Original entry on oeis.org

1001, 105, 231, 30, 42, 70, 110, 66, 78, 170, 102, 114, 138, 370, 174, 826, 222, 246, 258, 318, 354, 402, 438, 498, 534, 582, 654, 762, 786, 894, 978, 1038, 1158, 1338, 1506, 1542, 1758, 1986, 2082, 2202, 2334, 2598, 2922, 3126, 3462, 3918, 4098, 4398, 4614, 5262
Offset: 15

Views

Author

Michael De Vlieger, Jul 06 2025

Keywords

Comments

a(1) = A384000(3) = 1001; A010846(1001) = A024718(3) = 15; 1001 is the smallest number k with 3 distinct prime factors that has the smallest possible number of terms in row k of A162306, i.e., m <= k such that rad(m) | k.
For n > 30, 6 | a(n).

Examples

			Table of a(n) indicating prime factors and S, where S = {ceiling(log_p a(n))} for all primes p that divide a(n), in order of the magnitude of p.
                                Prime power factor
                                    1111223344455
 n  m=a(n) pi(facs(m))    S     23571379391713739
-------------------------------------------------
15   1001   4.5.6       4.3.3   ...111
16    105   2.3.4       5.3.3   .111
17    231   2.4.5       5.3.3   .1.11
18     30   1.2.3       5.4.3   111
19     42   1.2.4       6.4.2   11.1
20     70   1.3.4       7.3.3   1.11
21    110   1.3.5       7.3.2   1.1.1
22     66   1.2.5       7.4.2   11..1
23     78   1.2.6       7.4.2   11...1
24    170   1.3.7       8.4.2   1.1...1
25    102   1.2.7       7.5.2   11....1
26    114   1.2.8       7.5.2   11.....1
27    138   1.2.9       8.5.2   11......1
28    370   1.3.12      9.4.2   1.1........1
29    174   1.2.10      8.5.2   11.......1
30    826   1.4.17     10.4.2   1..1............1
31    222   1.2.12      8.5.2   11.........1
32    246   1.2.13      8.6.2   11..........1
33    258   1.2.14      9.6.2   11...........1
34    318   1.2.16      9.6.2   11.............1
		

Crossrefs

Programs

  • Mathematica
    (* See Mathematica code link for function definitions for kappaomega and theta *)
    s =  kappaomega[3, 6000]; t = Map[theta, s];
    Map[s[[FirstPosition[t, #][[1]] ]] &, Union[t]]

A114502 Triangle read by rows: T(n,k) is number of ordered trees with n edges and having exactly k vertices all of whose children are leaves (1<=k<=floor(n/2) for n>=2).

Original entry on oeis.org

1, 2, 5, 13, 1, 34, 8, 89, 42, 1, 233, 183, 13, 610, 717, 102, 1, 1597, 2622, 624, 19, 4181, 9134, 3275, 205, 1, 10946, 30691, 15473, 1650, 26, 28657, 100284, 67684, 11020, 366, 1, 75025, 320466, 279106, 64553, 3716, 34, 196418, 1005630, 1098402, 342867
Offset: 1

Views

Author

Emeric Deutsch, Dec 02 2005

Keywords

Comments

Row 1 has one term; row n (n>=2) has floor(n/2) terms. Row sums are the Catalan numbers (A000108). Column 1 yields the Fibonacci numbers with odd index (A001519). Sum(kT(n,k),k=1..floor(n/2))=[1+sum(binomial(2j,j),j=0..n-1)]/2 (A024718).

Examples

			T(4,2)=1 because we have the tree with two paths of length two, rab and rcd, emanating from the root r; a and b are vertices all of whose children are leaves.
Triangle starts:
  1;
  2;
  5;
  13,1;
  34,8;
  89,42,1;
  233,183,13;
  610,717,102,1;
  ...
		

Crossrefs

Programs

  • Maple
    G:=1/2/(z^2-z)*(-1+z+z^2-t*z^2+sqrt(1-6*z+11*z^2-2*t*z^2-6*z^3+2*z^3*t+z^4-2*z^4*t+t^2*z^4)): Gser:=simplify(series(G,z=0,18)): for n from 1 to 15 do P[n]:=coeff(Gser,z^n) od: 1; for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..floor(n/2)) od; # yields sequence in triangular form

Formula

G.f.: G=G(t, z) satisfies z(1-z)G^2-(1-z-z^2+tz^2)G+1-2z+tz=0.
G.f. G(t,z) can be derived easily from the symbolic decomposition of an ordered tree according to the degree of the root; one obtains G = 1 + z*(G-1+t) + z^2*(G^2-1+t) + z^3*(G^3-1+t) + ... . - Emeric Deutsch, Feb 12 2015

A171670 Triangle T read by rows : T(n,k)= A007318(n,k)*A005773(n-k).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 13, 20, 12, 4, 1, 35, 65, 50, 20, 5, 1, 96, 210, 195, 100, 30, 6, 1, 267, 672, 735, 455, 175, 42, 7, 1, 750, 2136, 2688, 1960, 910, 280, 56, 8, 1, 2123, 6750, 9612, 8064, 4410, 1638, 420, 72, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2009

Keywords

Examples

			Triangle begins : 1 ; 1,1 ; 2,2,1 ; 5,6,3,1 ; 13,20,12,4,1 ; 35,65,50,20,5,1 ; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)= A024718(n).

A361802 Irregular triangle read by rows where T(n,k) is the number of k-subsets of {-n+1,...,n} with sum 0, for k = 1,...,2n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 5, 2, 1, 1, 4, 10, 16, 18, 14, 8, 3, 1, 1, 5, 15, 31, 46, 51, 43, 27, 12, 3, 1, 1, 6, 21, 53, 98, 139, 155, 134, 88, 43, 16, 4, 1, 1, 7, 28, 83, 184, 319, 441, 486, 424, 293, 161, 68, 21, 4, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2023

Keywords

Comments

Also the number of k-subsets of {1,...,2n} with mean n.

Examples

			Triangle begins:
   1
   1   1   1
   1   2   3   2   1
   1   3   6   7   5   2   1
   1   4  10  16  18  14   8   3   1
   1   5  15  31  46  51  43  27  12   3   1
   1   6  21  53  98 139 155 134  88  43  16   4   1
   1   7  28  83 184 319 441 486 424 293 161  68  21   4   1
Row n = 3 counts the following subsets:
  {0}  {-1,1}  {-1,0,1}   {-2,-1,0,3}  {-2,-1,0,1,2}
       {-2,2}  {-2,0,2}   {-2,-1,1,2}
               {-2,-1,3}
		

Crossrefs

Row lengths are A005408.
Row sums are A212352.
A007318 counts subsets by length.
A067538 counts partitions with integer mean.
A231147 counts subsets by median.
A327475 counts subsets with integer mean, median A000975.
A327481 counts subsets by mean.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[-n+1,n],{k}],Total[#]==0&]],{n,6},{k,2n-1}]
Previous Showing 31-34 of 34 results.