cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A025712 Index of 6^n within sequence of numbers of form 2^i*6^j.

Original entry on oeis.org

1, 4, 10, 18, 29, 42, 58, 77, 98, 122, 148, 177, 209, 243, 280, 319, 361, 405, 452, 502, 554, 609, 666, 726, 789, 854, 922, 992, 1065, 1140, 1218, 1299, 1382, 1468, 1556, 1647, 1741, 1837, 1936, 2037, 2141, 2247, 2356, 2468, 2582, 2699, 2818, 2940, 3065, 3192
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025636. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A025610.

Programs

A307252 Records in A319100.

Original entry on oeis.org

1, 2, 6, 12, 24, 36, 48, 72, 144, 216, 288, 432, 864, 1296, 1728, 2592, 5184, 7776, 10368, 15552, 31104, 46656, 62208, 93312, 186624, 373248, 559872, 1119744, 2239488, 3359232, 4478976, 6718464, 13436928, 20155392, 26873856, 40310784, 80621568, 120932352
Offset: 1

Views

Author

Jianing Song, Mar 31 2019

Keywords

Comments

All terms are of the form 6^u*2^j. Other than the term 48, k = 6^i*2^j is a term if and only if for all i', j' such that F(i',j') < F(i,j) we have 6^i'*2^j' < 6^i*2^j, where F(i,j) = Product_{s=1..i} (p_s)*Product_{t=1..j} (q_t), where p_1 = 7, p_2 = 9, p_s = A002476(s-1) for s >= 3; q_1 = 4, q_2 = 2, q_t = A007528(t-2) for t >= 3. Or equivalently: (a) for any u, v such that u <= i and 6^u < 2^v, Product_{s=i-u+1..i} (p_s) < Product_{t=j+1..j+v} (q_t); (b) for any u, v such that v <= j and 6^u > 2^v, Product_{s=i+1..i+u} (p_s) > Product_{t=j-v+1..j} (q_t). For example, 746496 = 6^6*2^4 is not a term because (q_3)*(q_4) = 5*11 > p_7 = 43.

Examples

			A319100(168) = 48 which is larger than A319100(i) for i < 168, so 48 is a term.
		

Crossrefs

Programs

  • PARI
    P(n) = if(!n, 1, if(n==1, 7, my(i=0,N=9); forprime(p=7, oo, if(p%3==1, i++; N*=p); if(i==n-1, return(N)))))
    Q(n) = if(!n, 1, if(n==1, 4, my(i=0,N=4); forprime(p=2, oo, if(p%3==2, i++; N*=p); if(i==n-1, return(N)))))
    v = []; for(i=0, 15, for(j=0, 15, if(P(i)*Q(j) < min(P(16), Q(16)), v=concat(v, [P(i)*Q(j)])))); v=vecsort(v);
    u = []; for(i=1, #v, if(sum(j=1, i-1, A319100(v[j]) >= A319100(v[i]))==0, u=concat(u, [A319100(v[i])])));
    vecsort(concat(u, [48])) \\ See A319100 for its program

A333964 Numbers of the form 2^i * 6^j * 30^k * 210^m where i, j, k, m >= 0.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2520, 2592
Offset: 1

Views

Author

David A. Corneth, Apr 20 2020

Keywords

Crossrefs

Intersection of A025487 and A002473.

Programs

  • Mathematica
    mx = 2600; Select[Sort[Flatten[Table[2^i*6^j*30^k*210^m, {i, 0, Log[2, mx]}, {j, 0, Log[6, mx]}, {k, 0, Log[30, mx]}, {m, 0, Log[210, mx]}]]], # <= mx &] (* Amiram Eldar, Apr 24 2020 after Robert G. Wilson v at A279537 *)

Formula

Sum_{n>=1} 1/a(n) = 15120/6061. - Amiram Eldar, Feb 18 2021
Previous Showing 11-13 of 13 results.