cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A228339 Fourth differences of Catalan numbers (A000108).

Original entry on oeis.org

3, 9, 30, 102, 352, 1230, 4344, 15483, 55626, 201246, 732564, 2681223, 9861342, 36428320, 135100620, 502841295, 1877678370, 7032454470, 26410804020, 99437742720, 375260126904, 1419223506516, 5378236459328, 20419260060462, 77659985060772, 295844249258796, 1128738495397128, 4312685074680465, 16500218817839274, 63209983347693924
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Differences[Table[CatalanNumber[n], {n, 0, 30}], 4] (* Amiram Eldar, Jul 10 2023 *)

Formula

From Amiram Eldar, Jul 10 2023: (Start)
a(n) = 9*(9*n^4 + 54*n^3 + 135*n^2 + 122*n + 40) * n! * binomial(2*n, n)/(n+5)!.
Sum_{n>=0} a(n)/4^n = 38. (End)

A382668 a(n) = C(n+1) - C(n-1) - 2*C(n-2) where C(n) = A000108(n) are the Catalan numbers.

Original entry on oeis.org

2, 10, 33, 108, 359, 1214, 4169, 14508, 51064, 181492, 650522, 2348856, 8535921, 31197430, 114601065, 422891340, 1566903060, 5827192140, 21743726430, 81383916840, 305465105790, 1149489049644, 4335921660522, 16391329697528, 62091796219904, 235656705875304
Offset: 2

Views

Author

F. Chapoton, Apr 02 2025

Keywords

Crossrefs

Programs

  • Maple
    gf := ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2):
    ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 2..27);  # Peter Luschny, Apr 03 2025
  • Mathematica
    a[n_]:=CatalanNumber[n+1]-CatalanNumber[n-1]-2CatalanNumber[n-2];Array[a,26,2] (* James C. McMahon, Apr 05 2025 *)
  • SageMath
    C = catalan_number
    [C(n + 1) - C(n - 1) - 2 * C(n - 2) for n in range(2, 28)]

Formula

a(n) = [x^n] ((2*x^3 + x^2 - 1)*sqrt(1 - 4*x) - 4*x^3 - 3*x^2 - 2*x + 1)/(2*x^2). - Peter Luschny, Apr 03 2025
Previous Showing 11-12 of 12 results.