cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A026611 Number of 3's between n-th 2 and (n+1)st 2 in A026600.

Original entry on oeis.org

1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 2, 0, 2, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Keywords

A026612 a(n) = number of 1's between n-th 3 and (n+1)st 3 in A026600.

Original entry on oeis.org

0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 2, 0, 1, 2, 0, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 2, 0, 2, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1, 1, 2, 0, 2, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Keywords

A026614 a(n) least k > a(n-1) such that a(k)=s(n), for n >= 2, where s = A026600.

Original entry on oeis.org

1, 6, 9, 11, 15, 18, 20, 24, 27, 28, 33, 36, 38, 42, 45, 47, 51, 54, 55, 60, 63, 65, 69, 72, 74, 78, 81, 84, 87, 90, 92, 96, 99, 101, 105, 108, 109, 114, 117, 119, 123, 126, 128, 132, 135, 136, 141, 144, 146, 150, 153, 155, 159, 162
Offset: 1

Views

Author

Keywords

A026606 [1->null]-transform of three-symbol Thue-Morse A026600, with 1 subtracted.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Keywords

Comments

Old name was: a(n) = b(n)-1, where b(n) = n-th term of A026600 that is not a 1.
From Michel Dekking, Apr 18 2019: (Start)
This sequence is a morphic sequence, i.e., a letter-to-letter projection of a fixed point of a morphism. Let the morphism sigma be given by
1->123, 2->456, 3->345,4->612, 5->561, 6->234,
and let the letter-to-letter map delta be given by
1->1, 2->2, 3->1, 4->2, 5->2, 6->1.
Then (a(n)) = delta(x), where x = 1234... is a fixed point of sigma.
This representation can be obtained by noting that this sequence, with 1 added, can also be viewed as the [1->23, 2->23, 3->32]-transform of A026600, and by doubling 1,2 and 3, renaming the resulting six letters as 1,2,3,4,5,6.
(End)

Crossrefs

Extensions

Name changed by Michel Dekking, Apr 18 2019

A026607 Delete all 2's from A026600 and then replace each 3 with 2.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Keywords

A053838 a(n) = (sum of digits of n written in base 3) modulo 3.

Original entry on oeis.org

0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 0, 2, 0, 1, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 0
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Start with 0, repeatedly apply the morphism 0->012, 1->120, 2->201. This is a ternary version of the Thue-Morse sequence A010060. See Brlek (1989). - N. J. A. Sloane, Jul 10 2012
A090193 is generated by the same mapping starting with 1. A090239 is generated by the same mapping starting with 2. - Andrey Zabolotskiy, May 04 2016

Crossrefs

Equals A026600(n+1) - 1.

Programs

  • Maple
    A053838 := proc(n)
        add(d,d=convert(n,base,3)) ;
        modp(%,3) ;
    end proc:
    seq(A053838(n),n=0..100) ; # R. J. Mathar, Nov 04 2017
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {0, 1, 2}, 1 -> {1, 2, 0}, 2 -> {2, 0, 1}}] &, {0}, 7] (* Robert G. Wilson v, Mar 08 2005 *)
  • PARI
    a(n) = vecsum(digits(n, 3)) % 3; \\ Michel Marcus, May 04 2016
    
  • Python
    from sympy.ntheory import digits
    def A053838(n): return sum(digits(n,3)[1:])%3 # Chai Wah Wu, Feb 28 2025

Formula

a(n) = A010872(A053735(n)) =(n+a(floor[n/3])) mod 3. So one can construct sequence by starting with 0 and mapping 0->012, 1->120 and 2->201 (e.g. 0, 012, 012120201, 012120201120201012201012120, ...) and looking at n-th digit of a term with sufficient digits.
a(n) = A004128(n) mod 3. [Gary W. Adamson, Aug 24 2008]
Previous Showing 11-16 of 16 results.