cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A026790 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026780.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 23, 41, 72, 135, 243, 432, 804, 1455, 2608, 4836, 8785, 15838, 29306, 53385, 96654, 178600, 326019, 592140, 1093135, 1998537, 3638700, 6712659, 12287071, 22412784, 41325279, 75712253, 138308808, 254912873
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
        if n<0 then 0;
        elif k=0 or k =n then 1;
        elif k <= n/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        fi ;
    end proc:
    seq( add(T(n-k,k), k=0..floor(n/2)), n=0..40); # G. C. Greubel, Nov 02 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];
    Table[Sum[T[n-k,k], {k, 0, Floor[n/2]}], {n,0,40}] (* G. C. Greubel, Nov 02 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..40)] # G. C. Greubel, Nov 02 2019

A026892 T(2n,n-4), T given by A026780.

Original entry on oeis.org

1, 19, 220, 2021, 16246, 119914, 835080, 5579147, 36150820, 228879616, 1423367610, 8727874180, 52919787978, 317969615146, 1896431659490, 11241964305405, 66305996581006, 389432443869294, 2279159225280808
Offset: 4

Views

Author

Keywords

A026893 T(2n,n-3), T given by A026780.

Original entry on oeis.org

1, 15, 144, 1137, 8070, 53678, 342224, 2119359, 12856752, 76826324, 453947206, 2659486160, 15479103062, 89636939038, 517014933254, 2972784038825, 17051188983758, 97611767361074, 557935896092592, 3185250335024206
Offset: 3

Views

Author

Keywords

A026894 T(2n,n+1), T given by A026780.

Original entry on oeis.org

1, 5, 23, 106, 496, 2361, 11425, 56128, 279530, 1409242, 7182570, 36965292, 191896092, 1003889999, 5288020783, 28026601758, 149362212188, 799947847992, 4303496405324, 23245282077346, 126020035603358, 685477891161324
Offset: 1

Views

Author

Keywords

A026895 T(2n,n+2), T given by A026780.

Original entry on oeis.org

1, 7, 38, 191, 935, 4547, 22166, 108790, 538668, 2692996, 13594954, 69281309, 356222591, 1846781939, 9647229202, 50744420578, 268591503348, 1429730471552, 7649564591070, 41117462702680, 221938325574492, 1202501072716220
Offset: 2

Views

Author

Keywords

A026896 T(2n,n+3), T given by A026780.

Original entry on oeis.org

1, 9, 57, 316, 1647, 8330, 41558, 206418, 1026392, 5126109, 25763881, 130446758, 665644541, 3423360416, 17740450004, 92599616864, 486607242642, 2573051443194, 13683364565774, 73146530405912, 392867752273562, 2119154966713452
Offset: 3

Views

Author

Keywords

A026897 T(2n,n+4), T given by A026780.

Original entry on oeis.org

1, 11, 80, 489, 2732, 14512, 74888, 380329, 1916709, 9637687, 48528434, 245289395, 1246499970, 6374296278, 32816505566, 170106486358, 887697088316, 4662338571684, 24636365887246, 130918389450108, 699335986465354
Offset: 4

Views

Author

Keywords

A026899 T(2n+1,n+2), T given by A026780.

Original entry on oeis.org

1, 6, 30, 144, 687, 3296, 15972, 78294, 388320, 1947910, 9875566, 50560246, 261177401, 1360112590, 7134802722, 37673830960, 200106632766, 1068539351340, 5733226876876, 30894846668416, 167137498306038, 907416216735816
Offset: 1

Views

Author

Keywords

A026900 T(2n+1,n+3), T given by A026780.

Original entry on oeis.org

1, 8, 47, 248, 1251, 6194, 30496, 150348, 745086, 3719388, 18721063, 95045190, 486669349, 2512426480, 13070589618, 68484870582, 361191120212, 1916337714194, 10222616034264, 54800827268454, 295084855980404, 1595368824989782
Offset: 2

Views

Author

Keywords

A026901 T(2n+1,n+4), T given by A026780.

Original entry on oeis.org

1, 10, 68, 396, 2136, 11062, 56070, 281306, 1406721, 7042818, 35401568, 178975192, 910933936, 4669860386, 24114746282, 125416122430, 656713729000, 3460748531510, 18345703137458, 97782896293158, 523786141723670
Offset: 3

Views

Author

Keywords

Previous Showing 11-20 of 31 results. Next