cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A028684 Pseudo Galois numbers for d=22.

Original entry on oeis.org

1, 462, 108002664, 12244181663697984, 671907296255880840847211520, 17845802448787704188422900898268569763840, 229407835408995110669430829173445733902175228551055278080, 1427334550066488576237160094041582026191840875706260743124583853079375380480
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*22^#2 (22^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 22^n * Product[22^n - 22^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 22^n * prod(k = 0, n-1, 22^n - 22^k); \\ Amiram Eldar, Jul 14 2025

Formula

a(n) = 22^n * Product_{k=0..n-1} (22^n - 22^k).
a(n) ~ c * 22^(n^2+n), where c = Product_{k>=1} (1 - 1/22^k) = 0.952479533281... . - Amiram Eldar, Jul 14 2025

A028686 Pseudo Galois numbers for d=24.

Original entry on oeis.org

1, 552, 182822400, 34935377382604800, 3845511050527581426155520000, 243818371522804938361462294653739991040000, 8904331592711942612922766177589119660252055149215744000000, 187309027227336950425268745082789353880120643944720523727102076558245888000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1*24^#2 (24^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 24^n * Product[24^n - 24^k, {k, 0, n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 24^n * prod(k = 0, n-1, 24^n - 24^k); \\ Amiram Eldar, Jul 14 2025

Formula

a(n) = 24^n * Product_{k=0..n-1} (24^n - 24^k).
a(n) ~ c * 24^(n^2+n), where c = Product_{k>=1} (1 - 1/24^k) = 0.956597348026... . - Amiram Eldar, Jul 14 2025

A028666 a(n) = order of the orthogonal group O_n(2) if n is odd or O^(+)_n(2) if n is even.

Original entry on oeis.org

1, 12, 2880, 11612160, 758041804800, 794088208701849600, 13319336815141167562752000, 3575164027575627746190393606144000, 15354978274323252140217954794120612413440000, 1055182047088717407398960909148529544369642384916480000, 1160183823755957350394353874696058298158177597536388268425216000000
Offset: 0

Views

Author

Keywords

Comments

Pseudo-Galois numbers for d=4; order of group AGL(n,2^2).

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xii (but beware typos!).

Crossrefs

Programs

  • Maple
    f:=proc(n,eps) local m,d;
    if n mod 2 = 0 then m:=n/2; d:=gcd(4,2^m-eps);
    2^(m*(m-1))*mul( 4^i-1, i=1..m)*(2^m-eps)/d;
    else m:=(n-1)/2;
    2^(m^2)*mul( 4^i-1, i=1..m);
    fi; end;
    [seq(f(n,+1),n=0..20)]
  • Mathematica
    FoldList[ #1*4^#2 (4^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 4^n * Product[4^n - 4^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 4^n * prod(k = 0, n-1, 4^n - 4^k); \\ Amiram Eldar, Jul 14 2025

Formula

a(n) = 4^n * Product_{k=0..n-1} (4^n - 4^k).
a(n) ~ c * 4^(n^2+n), where c = A100221. - Amiram Eldar, Jul 14 2025

Extensions

Entry revised by N. J. A. Sloane, Dec 30 2008
Duplicate term 1 removed by Amiram Eldar, Jul 14 2025

A028690 Sorted Galois and Pseudo-Galois numbers.

Original entry on oeis.org

1, 2, 6, 12, 20, 24, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 432, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1344, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

Offset changed to 1 by Alois P. Heinz, Nov 07 2018
Previous Showing 11-14 of 14 results.