cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 142 results. Next

A061945 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 16 (most significant digit on right, least significant zeros not written).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 25, 29, 53, 110, 177, 237, 255, 2260, 3214, 4313, 4563, 7595, 20220, 35139, 167134, 180319, 186885, 315850, 439975, 559740, 4393188, 8414132, 8434510
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029509 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 22 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 16; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn, m=16) = my(s, t); for(k=1, nn, s=k/m^valuation(k, m); while(s, t=t*m+s%m; s\=m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25 2002
a(32)-a(34) from Lars Blomberg, Oct 22 2011

A061946 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 17 (most significant digit on right).

Original entry on oeis.org

1, 53, 64, 192, 535, 1017, 1888, 23968, 203008, 9231277
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029510 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 22 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 17; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn) = my(s, t); for(k=1, nn, s=k/17^valuation(k, 17); while(s, t=t*17+s%17; s\=17); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(10) from Lars Blomberg, Oct 22 2011

A061947 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 18 (most significant digit on right).

Original entry on oeis.org

1, 2, 3, 6, 9, 17, 47, 61, 69, 137, 323, 385, 674, 731, 884, 1245, 1253, 17204, 35580, 37282, 73270, 74919, 78625, 98413, 119017, 263197, 313732, 402321, 467738, 661300, 4757138, 8445220, 9481937
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029511 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. - Lars Blomberg, Oct 23 2011

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 18; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)
  • PARI
    lista(nn) = my(s, t); for(k=1, nn, s=k/18^valuation(k, 18); while(s, t=t*18+s%18; s\=18); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(29)-a(33) from Lars Blomberg, Oct 23 2011

A061948 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 19 (most significant digit on right).

Original entry on oeis.org

1, 3, 9, 27, 29, 36, 39, 53, 72, 108, 180, 189, 360, 900, 1008, 1885, 1899, 2877, 3120, 4272, 6975, 14319, 16203, 18724, 19959, 24777, 30071, 38376, 84748, 85053, 90843, 108412, 121996, 155556, 327321, 366128, 545949, 727236, 1332360, 1847072, 3090195, 3229872
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029512 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Oct 23 2011]

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 19; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002; Aug 25, 2002
a(40)-a(42) from Lars Blomberg, Oct 23 2011

A061950 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 21 (most significant digit on right).

Original entry on oeis.org

1, 3, 5, 7, 15, 25, 80, 321, 401, 1105, 1440, 2185, 17665, 26585, 132920, 287216, 659355, 1267785, 2096240, 3612505
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029514 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Oct 24 2011]

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 21; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(17)-a(20) from Lars Blomberg, Oct 24 2011

A061952 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 23 (most significant digit on right).

Original entry on oeis.org

1, 11, 28, 44, 56, 93, 121, 132, 144, 176, 248, 396, 435, 528, 704, 1647, 2189, 2288, 2904, 2992, 6116, 8624, 9792, 9843, 23100, 76320, 102868, 139488, 198539, 252801, 271744, 718340, 859593, 972873, 1345421, 1875700, 4080868, 4422816, 9697495
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029516 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Oct 25 2011]

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 23; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(32)-a(39) from Lars Blomberg, Oct 25 2011

A061953 Numbers n such that n divides the (right) concatenation of all numbers <= n written in base 24 (most significant digit on right, least significant zeros not written).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 20, 23, 100, 115, 116, 299, 575, 2660, 3726, 5858, 7282, 7452, 95610, 128349, 259681, 266411, 2853820, 2974820
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029517 in that all least significant zeros are removed before concatenation.
No more terms < 10^7. [Lars Blomberg, Oct 27 2011]

Examples

			See A061931 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 24; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[c, IntegerDigits[IntegerReverse[#, b], b]], b], #] &] (* Robert Price, Mar 08 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(25)-a(26) from Lars Blomberg, Oct 27 2011

A061956 Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 3 (most significant digit on right).

Original entry on oeis.org

1, 4, 7, 11, 56, 104, 340, 17467, 19136, 125533, 230857
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029520 in that all least significant zeros are kept during concatenation.
No more terms < 10^7. [Lars Blomberg, Aug 28 2011]

Examples

			See A061955 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 3; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[Reverse[IntegerDigits[#, b]], c], b], #] &] (* Robert Price, Mar 07 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002

A061957 Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 4 (most significant digit on right).

Original entry on oeis.org

1, 3, 9, 11, 63, 79, 189, 271, 507, 833, 8697, 12739, 3341049
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029521 in that all least significant zeros are kept during concatenation.
No more terms < 10^7. - Lars Blomberg, Aug 28 2011

Examples

			See A061955 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 4; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[Reverse[IntegerDigits[#, b]], c], b], #] &] (* Robert Price, Mar 07 2020 *)
  • PARI
    lista(nn, m=4) = my(c, t); for(k=1, nn, t+=m^c*fromdigits(Vecrev(digits(k, m)), m); c+=logint(m*k, m); if(t%k==0, print1(k, ", "))); \\ Jinyuan Wang, Dec 05 2020

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(13) from Lars Blomberg, Aug 28 2011

A061958 Numbers n such that n divides the (left) concatenation of all numbers <= n written in base 5 (most significant digit on right).

Original entry on oeis.org

1, 32, 304, 639, 704, 903, 3151, 4112, 6713, 34992, 96977, 2628797, 3070243, 3661679, 8665399
Offset: 1

Views

Author

Larry Reeves (larryr(AT)acm.org), May 24 2001

Keywords

Comments

This sequence differs from A029522 in that all least significant zeros are kept during concatenation.
No more terms < 10^7.

Examples

			See A061955 for example.
		

Crossrefs

Programs

  • Mathematica
    b = 5; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[Reverse[IntegerDigits[#, b]], c], b], #] &] (* Robert Price, Mar 07 2020 *)

Extensions

Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(12)-a(15) from Lars Blomberg, Aug 26 2011
Previous Showing 101-110 of 142 results. Next